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Purpose:Nucleotide-binding oligosaccharide-like receptors (NOD) are pivotal molecules with crucial roles in the regulation of inflamma
tion, tumor transformation, angiogenesis, tumor stem cells, and chemoresistance. This study aimed to assess the prognostic implicatio
ns of NOD signaling in diverse cancer types and its relationship with immune infiltration.Methods:Gene expression data from TCGA rel
ated to the NOD signaling pathway were integrated with clinical data. Prognostically relevant NOD pathway genes were analyzed using
univariate and multivariate Cox regression and Kaplan-Meier survival analysis. The accuracy of our prediction model was validated thr
ough receiver operating characteristic (ROC) curve analysis.Single-cell analysis of genes associated with reduced survival in patients, a
nd single-sample immunoinfiltration analysis revealed cell-level differences between different groups.Results:Univariate Cox regressio
n analysis, multivariate cox regression analysis and Kaplan-Meier analysis were used to identify prognostic genes in NOD pathway. TRA
F5 is an important prognostic gene in multiple cancer types, and mutation analysis showed that patients with TRAF5 mutations had red
uced survival. Immune infiltration analysis revealed differences in effector memory CD8 T cells and immature B cells between high- an
d low-risk groups, suggesting potential druggable targets. Single-cell analysis highlighted that reduced survival was associated with ov
erexpression of TXN in both primary and metastatic tissues.Conclusion:NOD signaling pathway, specifically TRAF5, plays a critical role i
n cancer prognosis across various cancer types. Immune infiltration disparities offer therapeutic opportunities, and TXN represents a p

romising target for novel anticancer treatments.

Introduction

Cancer represents a prevalent and substantial componen
t of the global health landscape, with the incidence and
mortality rates steadily rising year after year[1]. Notably,
breast, lung, colorectal, prostate, and gastric cancers sta
nd as prominent malignancies on a worldwide scale, cont
ributing significantly to the ever-increasing global cancer
burden, which is projected to reach a staggering 28.4 mill
ion cases by 2040[1]. Contemporary therapeutic approac
hes for various cancers encompass surgical resection, rad
iotherapy, chemotherapy, and targeted therapy, yet mult
iple challenges persist within the therapeutic landscape|
2]. Concurrently, cancer ranks as the second leading caus
e of death on a global scale, and it imposes a substantial
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economic burden, particularly in our nation[3,4]. Conseq
uently, a pressing need emerges for comprehensive inves
tigations into cancer's prognostic factors, aiming to guide
clinical interventions and enhance patient survival.
Nod-like receptors (NLRs) occupy a pivotal role in the rec
ognition of a broad spectrum of pathogens, instigating in
nate immune responses by orchestrating the activation o
f the NFkB and MAPK pathways. This activation cascade u
Itimately culminates in the production of cytokines and t
he induction of apoptosis[5,6]. Notably, the oligomerizati
on of NLRs, exemplified by pattern recognition receptors
like NLRP1 and NLRP3, results in the assembly of multipr
otein complexes, subsequently triggering Caspase-1 activ
ation. This, in turn, leads to the emergence of the inflam
matory cytokines IL-1B and IL-18, which are implicated in
cell death[7,8,9,10]. Importantly, this phenomenon is as
sociated with the invasive growth of malignancies such a
s breast, gastric, lung, and skin cancers[11,12].
Recognizing the pivotal role of NLRs in the regulation of i
mmune responses and inflammation, it becomes paramo
unt to elucidate the impact of the NLR signaling pathway
on cancer. In recent years, several investigations have in
dicated, through KEGG functional analysis, that the genes
relevant to cancer in breast, pancreatic adenocarcinoma,
and glioblastoma multiforme (GBM) are predominantly e
nriched in the Nod-like receptor signaling pathway[13,14,
15]. Nevertheless, the current comprehension of NLRs in
the context of pan-cancer and the underlying mechanism
s of their signaling pathway remains limited. Consequentl
y, it becomes imperative to embark on further exploratio
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n of NLRs, with the aim of fostering innovative perspectiv
es and methodologies for cancer treatment and prognost
ic evaluation on a pan-cancer scale.

In this study, we screened and analyzed genes associated
with the NLRs signaling pathway based on gene expressi

on data and clinical data from the Cancer Genome Atlas (
TCGA) dataset to assess the prognostic value of these ge

nes in pan-cancer. Subsequently, we also performed imm
une cell infiltration analysis, mutation analysis, and singl

e cell analysis to fully investigate the pan-carcinoma situ

ation.

2 Methods

2.1Data collection and processing

Nod-like receptor signaling pathway genes were obtaine
d from the KEGG database (https://www.genome.jp/kegg
/), totaling 184 genes (Table S1). After excluding cancers
with limited sample cases or those lacking normal sample
controls, gene expression matrices for both normal and
diseased samples for 10 cancer types were acquired from
the Cancer Genome Atlas (TCGA). Additionally, clinical d
ata, including patient gender, age, survival status, pathol
ogic stage, and survival period, were collected. The 10 ca
ncer types encompassed Bladder Urothelial Carcinoma (B
LCA), Breast Invasive Carcinoma (BRCA), Colon Adenocarc
inoma (COAD), Esophageal Carcinoma (ESCA), Glioblasto
ma Multiforme (GBM), Head and Neck Squamous Cell Car
cinoma (HNSC), Lung Adenocarcinoma (LUAD), Lung Squa
mous Cell Carcinoma (LUSC), Rectum Adenocarcinoma (R
EAD), and Stomach Adenocarcinoma (STAD). Table S2 list
s the full names, tumor samples, normal samples and tot
al samples of the ten cancers. Subsequently, the data un
derwent thorough cleaning and preprocessing to eliminat
e samples with missing critical information, ensuring the
availability of a sample collection for each cancer type fo
r subsequent analysis.

2.2ldentification of Differentially Expressed Gene

S

For the analysis of Nod-like receptor pathway genes, we

employed the "edgeR" R package to identify differentiall

y expressed genes between normal and tumor samples. T
he criteria for screening were set as |log2 fold change (F

C)| > 1 and a false discovery rate (FDR) of < 0.05

2.3Univariate and Multivariate Cox Regression A
nalysis

We performed univariate Cox regression analyses using t
he "survival" software package to assess the relationship
between each gene and patient survival[16,17]. The uppe
r and lower limits of the corresponding hazard ratio (HR)
and 95% confidence intervals (HR95H, HR95L) are calcula
ted. Risk score HR> 1 indicates that the expression level
of this gene is negatively correlated with the prognosis, t
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hat is, the higher the expression level, the worse the pro
gnosis; HR<1 indicates that the expression level of this ge
ne is positively correlated with the prognosis, that is, the
higher the expression level, the better the prognosis; HR
=1 indicates that the gene is not associated with prognos
is. Subsequently, the "glmnet", "survival" and "survminer
" packages were used to conduct multivariate cox regress
ion analysis[18], establish the prognosis model, and calcu

late the sample risk score.

2.4Mapping Survival and Risk Curves

The risk scores for patients across the 10 cancer types w

ere computed using the risk score formula derived from t
he prognostic model. Subsequently, patients were stratifi
ed into high-risk and low-risk groups. To investigate the c
onnection between risk scores and overall survival, a log-
rank test was conducted for each cancer type employing

the "survival" software package. Statistical significance w
as defined as p-values less than 0.05.

Moreover, risk curves and heat maps were generated usi
ng the "pheatmap" software package to further explore t
he relationship between risk scores and survival outcome
s[19,20].

2.5Independent Prognostic Analysis

In the independent prognostic analysis, the risk score der
ived from the prognostic prediction model was employed
as a predictor variable, while other clinical factors were i
ncluded as covariates. This analysis was conducted to ev

aluate the independent prognostic predictive capability o
f the risk score. The predictive performance of the risk sc
ore for patient survival, in consideration of other factors,
was assessed by calculating the hazard ratio (HR) and its
corresponding 95% confidence interval (HR95H, HR95L).

2.6Construction of ROC curves and nomograms
Receiver Operating Characteristic (ROC) curves were con
structed using the "survival," "survminer," and "timeROC
" software packages to evaluate the predictive performa
nce over time. The Area Under the Curve (AUC) was utiliz
ed to illustrate the accuracy of predictions. A higher AUC
value indicates that the corresponding ROC curve is close
r to the upper-left corner, signifying a higher true positiv
e rate and a lower false positive rate. In essence, a highe
r AUC value corresponds to greater prediction accuracy
[21,22].

The nomogram is a clinical prediction tool that leverages
the outcomes of multivariate Cox regression analysis[23].
It amalgamates the associations of multiple variables to
visually represent the impact of each variable on the pro
gnosis. The nomogram assigns scores to the range of valu
es for each of the selected clinical factors in the model, b
ased on their respective influence on the final outcome v
ariable. When predicting an individual sample, the scores
for each influencing factor can be summed to yield a tot
al score. The relationship between the total score and th
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e probability of the outcome event is then utilized to dia
gnose or predict the onset and progression of the diseas
e, thus furnishing the predictive value of the individual o
utcome event.

2.7Single-Sample Immunoinfiltration Analysis

To evaluate the correlation between gene expression an
d the abundance of eight distinct types of immune-infiltr
analysis. Subsequently, the ssGSEA algorithm was emplo
yed to assess the correlation between the expression of
nod-like receptor-related genes and the abundance of im
mune-infiltrating cells. The data were analyzed on the on
line tool of HiOmics Cloud Platform (https://henbio.com/
en/tools)[24].

2.8Mutation Analysis

Further analysis of mutations in nod-like receptor pathw

ay-related genes was conducted using the online platfor

m cBioPortal (https://www.cbioportal.org/). This analysis
aimed to determine the mutation frequency and mutati

on types of the selected genes and to explore the associa
tion between mutations and prognosis. The findings of th
e mutation analysis offer valuable insights into the poten
tial functions and repercussions of gene mutations in vari
ous cancer species.

2.9Single-Cell Analysis

Datasets for head and neck squamous carcinoma (GSE22
7156/GSE173468), gastric adenocarcinoma (GSE163558),
breast carcinoma (GSE161529), and thyroid carcinoma (G
SE184362) were sourced from the GEO database of the N
ational Center for Biotechnology Information (NCBI). The
se datasets encompassed data from carcinoma in situ (T),
metastatic tissue (LN), and paraneoplastic tissue (N). Mu
Iti-sample merge analysis on these diverse cancer datase
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Proct

ating cells (activated CD4 T cells, activated dendritic cells,
effector memory CD8 T cells, y 6 T cells, immature B cell
s, natural killer cells, neutrophils, and plasma cell-like de
ndritic cells), we employed the R package "GSVA" in conj
unction with the ssGSEA algorithm. Specifically, we categ
orized samples into high and low expression groups base
d on risk scores derived from multivariate Cox regression

ts was executed utilizing the Seurat R package (version 4.
3.0).

The data underwent an initial quality control process foll
owed by NormalizeData normalization. Subsequently, hig
hly variable genes were identified, and data normalizatio
n was conducted using the ScaleData function. Principal ¢
omponent PCA analysis was employed to reduce the dim
ensionality of the data. The Harmony function was utilize
d to mitigate batch effects. Cell projection and clustering
analyses were performed using nonlinear dimensionality
reduction and the FindClusters function, and cell types
were visualized through UMAP analysis. Cell clusters wer
e characterized using the FindAllIMarkers function to iden
tify marker genes for each cell cluster. Literature referen
ces cited in the dataset were used for cell cluster identifi
cation. Bubble plots were generated to illustrate the expr
ession of genes (MAPK9, MAPK10, TXN, TXN2, IFNAR2, C
CL2, IL6, IL1B, IKBKE) in each sample.

Result

Identification of Differentially Expressed Genes
To identify differentially expressed genes between cance
rous and normal tissue samples, we used log2FC values o
btained from differential analysis to generate heat map (
Fig. 1A) and box patterns (Fig. 1B-G). Our analysis reveale
d differential expression of ANTXR2, CXCL2, ITPR1, GPRC
6A, PYDC1, and TXNIP between cancerous lesions and no
rmal tissue samples in multiple cancers.
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Figl.Gene expression in different cancer types.(A)Gene expression heat maps in different cancer types.(B)Differential expression of ANT
XR2 among different groups.(C)Differential expression of CXCL2 among different groups.(D)Differential expression of ITPR1 among differe

nt groups.(E)Differential expression of GPRC6A among different groups.
ferential expression of TXNIP among different groups.

Prognostic Gene Value in Pan-Cancer

Prognostic genes with relevance to pan-cancer were initially i
dentified through Univariate Cox regression analysis (Table S
3). Subsequently, these genes underwent Multivariate Cox re
gression analysis to pinpoint the most suitable genes for cons
tructing the prognostic risk model (Table S4). Utilizing the ris
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(F)Differential expression of PYDC1 among different groups.(G)Dif

k scoring formula, the risk score for each sample was comput
ed, and samples were ranked from smallest to largest. Using
the median of the risk scores as the threshold value, the sam
ples were categorized into high-expression and low-expressi
on groups. The distribution of differences in survival status a
nd survival time between the high- and low-risk groups was v

isualized (Fig. 2).
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Fig2.Distribution of differences in survival status and survival time between groups for different cancer types.(A)Differences in the distr
ibution of Bladder Urothelial Carcinoma (BLCA) between high and low-risk groups.(B)Differences in the distribution of Breast invasive carc
inoma (BRCA) between high and low-risk groups.(C)Differences in the distribution of Colon adenocarcinoma (COAD) between high and lo
w-risk groups.(D)Differences in the distribution of Esophageal carcinoma (ESCA) between high and low-risk groups.(E)Differences in the di
stribution of Glioblastoma multiforme (GBM) between high and low-risk groups.(F)Differences in the distribution of Head and Neck squa
mous cell carcinoma (HNSC) between high and low-risk groups.(G)Differences in the distribution of Lung adenocarcinoma (LUAD) between
high and low-risk groups.(H)Differences in the distribution of Lung squamous cell carcinoma (LUSC) between high and low-risk groups.(l)
Differences in the distribution of Rectum adenocarcinoma (READ) between high and low-risk groups.(J)Differences in the distribution of S

tomach adenocarcinoma (STAD) between high and low-risk groups.

The results revealed a significantly higher number of dec
eased cases in the high-risk region for cancers such as BR
CA, COAD, ESCA, HNSC, LUAD, READ, and STAD compared
to the low-risk group. Furthermore, the heatmap illustra
ting the differential expression of prognostic genes betw
een high and low-risk groups demonstrated that all gene
s associated with a favorable prognosis (HR < 1, Table S4)
were significantly up-regulated in the low-risk group, wh
ile all genes unfavorable to prognosis (HR > 1, Table S4)
were significantly up-regulated in the high-risk group.
Kaplan-Meier curves (Fig. 3A-J) clearly demonstrated a su
bstantial increase in survival chances for patients in the |
ow-risk group compared to those in the high-risk group a
cross various cancer types, including BLCA (p < 0.001), BR
Meng et al.icll,Vol.2,ZAGA8611(2024) 10 November 2024

CA (p < 0.001), COAD (p < 0.001), ESCA (p = 0.025), GBM (
p < 0.001), HNSC (p < 0.001), LUAD (p < 0.001), LUSC (p <
0.001), READ (p < 0.001), and STAD (p < 0.001). This obse
rvation underscored the validity of the risk score as a rob
ust prognostic indicator, with statistical significance defi

ned by p < 0.05. Furthermore, time-dependent ROC curv

es (Fig. 3K-T) were employed to assess the accuracy of th
e 10 cancer prognosis-related genes in predicting the 1-,

3-, and 5-year overall survival of cancer patients. The are
a under the curve (AUC) values indicated that the progno
stic model exhibited strong predictive capability, thereby
identifying the aforementioned prognostic-related genes
as valuable prognostic markers for their respective canc

er types. In addition, within the pan-cancer prognostic ge
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nes, it was noted that TRAF5 was featured in the prognos
tic genes of BLCA, BRCA, COAD, and READ, while GABARA

PL2 was present in the prognostic genes of ESCA and STA
D within the digestive system cancers.
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Fig3.Survival probability in different cancer types.(A)Differences in survival probability between groups for Bladder Urothelial Carcinoma
(BLCA).(B)Differences in survival probability between groups for Breast invasive carcinoma (BRCA).(C)Differences in survival probability b
etween groups for Colon adenocarcinoma (COAD).(D)Differences in survival probability between groups for Esophageal carcinoma (ESCA).
(E)Differences in survival probability between groups for Glioblastoma multiforme (GBM).(F)Differences in survival probability between gr
oups for Head and Neck squamous cell carcinoma (HNSC).(G)Differences in survival probability between groups for Lung adenocarcinoma

(LUAD).(H)Differences in survival probability between groups for Lung squamous cell carcinoma (LUSC).(l)Differences in survival probabilit
y between groups for Rectum adenocarcinoma (READ).(J)Differences in survival probability between groups for Stomach adenocarcinoma

(STAD). (K)-(T) Corresponding ROC curves to validate the accuracy of the survival curves.

Assessment of Independent Prognostic Factors in
Patients with 10 Types of Cancer

To gauge whether the risk scores derived from the progn

ostic prediction model were influenced by other clinical f
actors, including patient age, gender, and clinical stage, b
oth one-way and multifactor Cox regression analyses wer
e conducted on the risk scores and clinical factors. The re
sults of the univariate Cox regression analysis (Figures S1)
demonstrated that the risk scores (P < 0.001) could func

tion as independent prognostic factors, independent of o
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ther clinical factors, for all cancers except GBM (P = 0.99
8). Importantly, multifactorial Cox regression analysis (Fi
g. 4A-)) further confirmed that the risk score (P < 0.001)
was an independent risk factor for these cancers, except
for GBM.

Subsequently, time-dependent ROC curve analysis was e
mployed to evaluate the accuracy of the predictive mode
I. The area under the risk score curve (AUC) is as follows:
0.745, 0.703, 0.737, 0.816, 0.704, 0.765,0.674, 0.703, 0.8
10 and 0.768 (Fig. 4K-T). These AUC values further under
scored the predictive accuracy of the model.
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Figd.Independent prognostic analysis.(A)Multifactor Cox regression analysis for Bladder Urothelial Carcinoma (BLCA).(B)Multifactor Cox regression a
nalysis for Breast invasive carcinoma (BRCA).(C)Multifactor Cox regression analysis for Colon adenocarcinoma (COAD).(D)Multifactor Cox regression
analysis for Esophageal carcinoma (ESCA).(E)Multifactor Cox regression analysis for Glioblastoma multiforme (GBM).(F)Multifactor Cox regression an
alysis for Head and Neck squamous cell carcinoma (HNSC).(G)Multifactor Cox regression analysis for Lung adenocarcinoma (LUAD).(H)Multifactor Co
x regression analysis for Lung squamous cell carcinoma (LUSC).(l)Multifactor Cox regression analysis for Rectum adenocarcinoma (READ).(J)Multifact
or Cox regression analysis for Stomach adenocarcinoma (STAD). (K)-(T) Corresponding ROC curves to validate the accuracy of the independent progn
ostic model.

cale. The length of each line segment represents the range of
values that a variable can assume. This graphical representat
ion serves to express the predictive model, incorporating vari
ables such as age, stage, gender, and risk score, which contri

Alignment Diagram (Nomogram)

The alignment diagram, commonly referred to as a nomogra
m, is constructed based on multifactor regression analysis. It
integrates multiple predictors and utilizes line segments with

scales plotted on the same plane according to a predefined s

BLCA

BRCA

COAD

HNSC
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bute to the magnitude of the outcome event (Fig. 5).
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Fig5.Nomogram construction.(A)Construction of nomogram for predicting 1, 2, and 3-year overall survival probability in Bladder Urothelial Carcinom
a (BLCA) based on clinical factors and risk score.(B)Nomogram for Breast invasive carcinoma (BRCA).(C)Nomogram for Colon adenocarcinoma (COAD).
(D)Nomogram for Esophageal carcinoma (ESCA).(E)Nomogram for Glioblastoma multiforme (GBM).(F)Nomogram for Head and Neck squamous cell ¢
arcinoma (HNSC).(G)Nomogram for Lung adenocarcinoma (LUAD).(H)Nomogram for Lung squamous cell carcinoma (LUSC).(I)Nomogram for Rectum
adenocarcinoma (READ).(J)Nomogram for Stomach adenocarcinoma (STAD).The labels *P<0.05, **P<0.01, ***P<0.001 indicate the statistical signific

ance levels.

In clinical practice, healthcare professionals can employ the ¢
olumn line diagram. They input the actual clinical informatio
n of the patient into the diagram, determining the correspon
ding scores for each variable based on the score scale. These
scores are then summed to obtain a total score. This total sc

Analysis of Differences in Immune Cell Infiltratio
n Between Different Samples

Single-sample gene set enrichment analysis (ssGSEA) was util
ized to compute the infiltration scores of individual immune
cells. The immune infiltration heatmap revealed variations in
the levels of specific immune cells. For instance, activated CD
4T cells exhibited higher immune infiltration levels in ESCA a
nd LUSC, with infiltration scores of 0.48 and 0.42, respectivel
y. Conversely, neutrophils demonstrated higher immune infil
tration scores in COAD and READ, with scores of 0.65 and 0.3
7, respectively (Fig. 6A).

The analysis of differences in immune cell infiltration betwee
n high-risk and low-risk groups uncovered significant disparit
es. Effector memory CD8 T cells exhibited elevated infiltratio

ore can be placed on the total score scale, and a vertical line
can be drawn on the survival rate scale at the corresponding
position of the total score scale to estimate the patient's surv
ival rate at 1 year, 2 years, and 3 years.

n in COAD (p = 8e-05), ESCA (p = 0.0025), HNSC (p = 0.033), L
UAD (p = 0.012), READ (p = 0.0047), and STAD (p = 0.00014)
when comparing high-risk and low-risk groups (Fig. 6B-K). In t
hese cases, effector memory CD8 T cell infiltration levels wer
e higher in the high-risk groups than in the low-risk groups(S
upplemental Fig. 2).

Similarly, immature B cells showed variations in infiltration b
etween high-risk and low-risk groups. Specifically, in BRCA (p
=0.03), COAD (p =0.00016), GBM (p = 0.0058), LUSC (p = 3.7
e-09), READ (p = 0.047), and STAD (p = 1.3e-07), statistically s
ignificant differences were observed (Fig. 6B-K). Immature B
cell infiltration levels were notably higher in the high-risk gro
ups than in the low-risk groups for BRCA, COAD, GBM, LUSC,
READ, and STAD (Figures S2)
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Fig6.Single-sample gene set enrichment analysis and immune cell infiltration.(A)Infiltration scores of immune cells in different cancer ty
pes.(B)Differential immune cell infiltration in Bladder Urothelial Carcinoma (BLCA).(C)Differential immune cell infiltration in Breast invasiv
e carcinoma (BRCA).(D)Differential immune cell infiltration in Colon adenocarcinoma (COAD).(E)Differential immune cell infiltration in Eso
phageal carcinoma (ESCA).(F)Differential immune cell infiltration in Glioblastoma multiforme (GBM).(G)Differential immune cell infiltratio
n in Head and Neck squamous cell carcinoma (HNSC).(H)Differential immune cell infiltration in Lung adenocarcinoma (LUAD).(I)Differentia
| immune cell infiltration in Lung squamous cell carcinoma (LUSC).(J)Differential immune cell infiltration in Rectum adenocarcinoma (REA

D). (K) Differential immune cell infiltration in Stomach adenocarcinoma (STAD).

Single-cell analysis and mutational analysis of TR
AFS5 in cancer

The frequency of TRAF5 mutations in the TCGA database

was explored using the CBioPortal website, covering data
from ten studies encompassing 5667 samples. The findin
gs revealed that TRAF5 mutations were present in 3% of

patients (Fig. 7A). Notably, copy number variations (CNV)
were predominant in BRCA, COAD, ESCA, LUAD, LUSC, an
d STAD, with CNV occurring in more than 8% of cases in B
RCA, although no CNV was observed in READ (Fig. 7B).

A comprehensive analysis of mutation sites uncovered a
total of 40 mutation sites, comprising 30 missense , 7 tru
ncating, and 3 splice mutations (Fig. 7C). Furthermore, th

Study of origin

A 4 samples per Patient

e correlation between TRAF5 gene mutations and clinical
prognosis was examined. Samples with at least one gene
change in mRNA expression were categorized as the alte
red group, while those without alterations were designat
ed the unaltered group. The results demonstrated signifi
cant differences between the two groups in terms of dise
ase-specific survival (DSS) (p = 1.475e-3), overall survival
(OS) (p = 3.326e-3), and progression-free survival (PFS) (p
= 1.383e-3) (Fig. 7D-F). Patients in the altered group exhi
bited significantly shorter survival than those in the unalt
ered group, indicating that TRAF5 gene mutations were a
ssociated with a poorer prognosis regarding DSS, OS, and
PFS.
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Fig7.Mutational analysis of TRAFS5 in different cancer types.(A)OncoPrint of TRAF5 gene alterations in cancer cohorts.(B)Details of TRAF5
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Differences in Disease-Specific Survival (DSS) between two groups.(E)Differences in Overall Survival (OS) between two groups.(F)Differenc

es in Progression-Free Survival (PFS) between two groups.
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To elucidate the expression patterns of prognostic genes
(MAPK9, MAPK10, TXN, TXN2, IFNAR2, CCL2, IL6, IL1B, an
d IKBKE) in different cell types of the tumor microenviron
ment across various cancers, we analyzed datasets of pri
mary tumors, lymph node metastases, and adjacent non-
cancerous tissues from BRCA, HNSC, STAD, and THCA, an
d visualized the data using bubble charts (Figure 8). Our f
indings revealed that these nine prognostic genes were p
rimarily expressed in cancer cells. Notably, the TXN gene
exhibited high expression levels in multiple cancer cell ty
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pes across BRCA, HNSC, STAD, and THCA. Specifically, in
HNSC and STAD, CD8+ T cells, epithelial cells, fibroblasts,
and macrophages from primary tumor and lymph node m
etastasis tissues showed elevated expression of TXN, wh
ereas its expression was lower in adjacent non-cancerous
tissues. These results provide valuable insights into the ¢
omplexity of cancer and the underlying biological mecha
nisms, paving the way for the development of novel ther
apeutic strategies and potential targets for future cancer
treatments.
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Fig8.Bubble plots of single-cell analysis.(A)Expression profiles of genes in different cell types in BRCA.(B)Expression profiles of genes in di
fferent cell types in HNSC.(C)Expression profiles of genes in different cell types in STAD.(D) Expression profiles of genes in different cell ty

pes in THCA
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Discussion

Nucleotide-binding oligomerization domain (NOD)-like receptors,
a subset of cytoplasmic pattern-recognition receptors, are integr
al components of the innate immune system's pathogen pattern
-recognition network, alongside RIG-I-like receptors, Toll-like rec
eptors, and the C-type lectin family[25,26]. These receptors serv
e pivotal roles in governing intracellular responses to infections,
noxious agents, and metabolic irregularities[27,28]. Furthermore,
NOD-like receptors have emerged as key players in a spectrum o
f human ailments, encompassing infectious maladies, malignanci
es, autoimmune disorders, and inflammatory conditions[29,30,3
1,32,33,34,35]. In the context of cancer, the influence of NOD-lik
e receptors has been notably evident in the development of vari
ous malignancies, including but not limited to bladder, colorectal,
and colon cancers[29,36,37]. Their regulatory impact on NOD-lik
e receptors is of particular relevance in this regard. Given the rel
atively understudied nature of the nod-like receptor signaling pat
hway in pan-cancer contexts, our study embarks on a comprehe
nsive analysis aimed at unveiling the prognostic and immunologi
cal relevance of this pathway across various cancers.

In this study, we analyzed gene expression matrices and clinical d
atasets of 10 cancers (BLCA, BRCA, COAD, ESCA, GBM, HNSC, LU
AD, LUSC, READ, STAD) downloaded from TCGA. Univariate and
multifactor cox regression analysis showed that TRAF5 had signifi
cant prognostic relationship with BLCA, BRCA, COAD and READ.
GABARAPL2 has a significant prognostic relationship with ESCA a
nd STAD. According to the risk score formula, the median risk sco
re was taken as the critical value, the samples were divided into
high-risk group and low-risk group, and the survival curve and in
dependent prognosis analysis of the high-low risk group were dr
awn. The results showed that risk score could be used as an inde
pendent prognostic factor to predict cancer. Particular emphasis
is placed on survival analysis, BLCA, BRCA, COAD, ESCA, GBM, HN
SC, LUAD, LUSC, READ, STAD chances of survival in patients with |
ow risk group was obviously higher and high-risk patients. The R
OC curve validated the accuracy of our model in predicting 1-yea
r, 3-year, and 5-year overall survival.

In order to further explore the potential role of TRAF5 in cancer
prognosis, we used the website cBioPortal for mutation analysis
of the TRAF5 gene. The results of the study showed that the pro
portion of CNV was the highest among BRCA, at more than 8%. |
n addition, we found that mutations in the TRAF5 gene were sign
ificantly associated with poor outcomes (DSS, OS, PFS). These res
ults further confirm the potential role of our prognostic model in
determining cancer prognosis. TRAF5 is associated with the occu
rrence and development of various cancers. For example, TRAF5
promotes the occurrence and development of colon cancer by a
ctivating the PI3K/AKT/NF-kB signaling pathway, and actsas an o
ncogene[38]. Relevant studies have shown that miR-135a can eff
ectively inhibit gastric cancer (GC) cell metastasis by directly targ
eting TRAF5 and subsequently inhibiting the NF-kB pathway, and
overexpression of TRAF5 was negatively correlated with the exp
ression of miR-135a in GC tissues[39]. In addition, TRAF5 has bee
n the target of human esophageal squamous carcinoma (ESCC),
and miR-26b has tumor suppressive effect on human ESCC throu
gh reverse regulation of TRAF5[40]. Overall, our results reveal th
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at TRAFS5 gene is significantly related to the occurrence and devel
opment of cancer, and provide valuable reference for future trea
tment strategies.
During our single-sample immune cell infiltration analysis, we ob
served significant differences in multiple immune cells, particular
ly effector memory CD8 T cells and immature B cells, in the high-
risk and low-risk groups for various cancers. Immune cell infiltrati
on within tumors strongly correlates with clinical outcomes, rend
ering them promising candidates as drug targets to enhance pati
ent survival[41]. Additionally, we conducted a single-cell analysis
to delve further into gene expression within various cell types. N
otably, the TXN gene exhibited elevated expression across multi
ple cell types in BRCA, HNSC, STAD, and THCA. Moreover, in the
case of HNSC and STAD, the TXN gene demonstrated notably hig
h expression in CD8+T cells, Epithelial cell, fibroblasts and macro
phages within the in situ cancer and lymph node metastatic tissu
es.
Thioredoxin-1 (TXN) assumes a pivotal role in the mitigation of re
active oxygen species, the activation of tumor suppressor genes,
and the stimulation of DNA repair enzymes. Numerous studies h
ave reported an overexpression of TXN in solid tumors, a factor s
ignificantly associated with an unfavorable prognosis[22]. The ge
ne encoding TXN is classified as a proto-oncogene, a potent drive
r of tumor growth, and an inhibitor of apoptosis, whether instiga
ted spontaneously or triggered by drug-induced mechanisms[43].
Elevated expression of the TXN gene has been linked to heighte
ned levels of hypoxia-induced factor-1alpha (HIF-1alpha) and the
overexpression of HIF-1 transactivator genes in cancer cells[44,4
5]. This phenomenon results in increased production of vascular
endothelial growth factor and excessive tumor angiogenesis[46].
Furthermore, the overexpression of TXN has demonstrated a str
ong correlation with aggressive tumor growth and diminished su
rvival among cancer patients[45,46,47]. Notably, Grogan et al[48]
. localized TXN within tumor cells and noted its overexpression in
gastric cancer tissues when compared to normal gastric mucosa.
These findings align with our own observations, reinforcing the
belief that TXN plays a pivotal role in sustaining the transformed
phenotype observed in certain human cancers. Moreover, it con
tributes to these cancers' resistance to chemotherapy, rendering
it a highly promising candidate for cancer drug development[49].
In summary, this comprehensive analysis reveals the prognostic
and immunological relevance of NOD-like receptors in various ca
ncers. Particular attention was paid to the potential role of TRAF
5 in cancer prognosis. Through in-depth analysis of gene expressi
on and mutation data, we found that TRAFS5 is significantly associ
ated with the occurrence and development of multiple cancers a
nd has an important potential role in prognostic judgment. In ad
dition, our immune cell infiltration analysis and single-cell analysi
s highlight the importance of immune mechanisms in tumor dev
elopment and point to the key role of the TXN gene in maintaini
ng the cancer transforming phenotype. These findings provide va
luable references for future cancer treatment strategies and pro
vide new ideas for further research on the biological mechanism
s of cancer.
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