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Articles
Revealing Causal Genes in Nasopharyngeal
Carcinoma: An Integrated Approach of
Mendelian Randomization and Single-Cell Sequencing
Yuxiao He1# , Bin Han1# , Xuanyu Pan2 , Jianping Zhou1 , Tingwei Lv1 , Xingrao Li3 , Yongjian Zhou1 , Yani Yang3 ,
Qingniao Zhou2 , Tingting Liu4 ,Yanling Hu1,2,3*

Objective:Nasopharyngeal carcinoma (NPC) is a malignancy with a complex genetic basis and a highly heterogeneous tumor micr-
oenvironment. This study aimed to identify genes causally associated with NPC risk using Mendelian randomization (MR) and to elucidate
their cell-type-specific expression patterns and disease relevance by integrating single-cell RNA sequencing (scRNA-seq) data. Methods: Bulk
transcriptomic datasets of NPC and non-tumor nasopharyngeal tissues were obtained from the Gene Expression Omnibus (GEO) to identify
shared differentially expressed genes (DEGs). Expression quantitative trait loci (eQTLs) corresponding to these genes were retrieved from
OpenGWAS, and NPC genome-wide association study (GWAS) summary statistics were obtained from the FinnGen database. Gene
expression levels, represented by eQTLs, were used as exposures in MR analyses, including Wald ratio, inverse-variance weighted (IVW),
MR-Egger, and weighted median methods. To link genetic findings to disease biology, scRNA-seq datasets of NPC and non-tumor samples
were integrated, batch-corrected, and annotated using a standard analysis workflow. Cell-type-specific expression patterns and tumor–
non-tumor expression differences of MR-identified genes were systematically evaluated. Results: A total of 494 shared DEGs were identified,
among which 313 genes were eligible for MR analysis. MR analyses identified five genes with putative causal associations with NPC risk:
TMEM200A and THBS2 as protective factors, and MFSD4, PSPH, and VPREB3 as risk factors.Single-cell analysis revealed distinct
cell-type-specific expression patterns of these genes within the NPC tumor microenvironment. Notably, TMEM200A was enriched in
fibroblasts and T cells, THBS2 in fibroblasts, MFSD4 in endothelial cells, PSPH in epithelial cells, and VPREB3 in B cells and plasma cells.
Furthermore, several of these genes exhibited significant expression differences between tumor and non-tumor samples within specific cell
populations, providing direct cellular evidence linking MR-identified genetic risk signals to NPC-related biological processes. Conclusions: By
integrating Mendelian randomization with single-cell transcriptomic analysis, this study bridges genetic causal inference with
cell-type-resolved disease biology in NPC. The identified genes exhibit distinct cellular localizations and tumor-associated expression
alterations, highlighting the contributions of immune, stromal, endothelial, and epithelial compartments to NPC susceptibility. These findings
provide a refined framework for understanding NPC pathogenesis and offer potential targets for future functional and therapeutic studies.

Introduction
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy
characterized by distinct geographic and ethnic distribution
patterns, with a notably high incidence in regions such as
southern China and Southeast Asia, where it poses a consi-
derable public health challenge[1]. The early clinical mani-
festations of NPC are often insidious and nonspecific, resulting
in frequent diagnosis at advanced stages and generally unfa-
vorable prognosis. A deeper understanding of NPC pathoge0
nesis is therefore essential to inform early detection and the dev-
elopment of effective therapeutic strategies.
Mendelian randomization (MR) has emerged as a powerful
methodological framework for inferring causal relationships
between exposures and disease outcomes. By leveraging genetic
variants as instrumental variables, MR minimizes confounding
and reverse causation biases that commonly affect conventional
observational studies[2]. While MR has been applied to identify
environmental influences on NPC risk — such as allergic
rhinitis[3] and vitamin D levels[4]—a systematic investigation into
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the causal roles of genetic determinants in NPC remains limited.
To address this research gap, we integrated transcriptomic and
genetic data to systematically identify and validate candidate
causal genes for NPC. Our analytical approach consisted of
three main stages: first, we identified differentially expressed
genes from bulk RNA sequencing data; second, we performed
MR analysis using large-scale GWAS summary statistics to
evaluate their potential causal effects on NPC; and finally, we
employed single-cell RNA sequencing to resolve the expression
patterns of these genes across cell types within the tumor
microenvironment. This multi-faceted strategy provides new
mechanistic insights into NPC etiology and highlights potential
targets for future gene-directed therapies.

Data and Methods
Transcriptomic Data Analysis
Two nasopharyngeal carcinoma (NPC) bulk transcriptomic
datasets, GSE53819 and GSE12452, were retrieved from the
Gene Expression Omnibus (GEO) database, comprising a total
of 49 NPC tissues and 28 non-cancerous nasopharyngeal tissues.
Raw expression data were downloaded from their respective
platforms, and probe identifiers were mapped to standardized
gene symbols using R (version 4.4.1). Expression profiles
within each dataset were integrated using the merge function,
and genes with missing values were removed to construct
independent expression matrices for subsequent analyses.
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Differential expression analysis was performed using the
“limma” package (version 3.60.6). The analysis was conducted
on quantified gene expression matrices that had been
normalized across samples during upstream preprocessing and
were represented as log₂(TPM + 1) values. As the input data
consisted of log-transformed continuous expression values and
no longer followed the mean–variance relationship character-
istic of raw count data, the voom transformation was not app-
lied.
Linear models were fitted using the lmFit function, and contrast
matrices were constructed with makeContrasts to enable group-
wise comparisons. Empirical Bayes moderation was subsequ-
ently applied using the eBayes function to improve the robust-
ness of statistical inference. Multiple testing correction was
performed using the Benjamini–Hochberg method, and genes
with an adjusted P value < 0.05 were considered statistically
significant. Differentially expressed genes (DEGs) were extra-
cted using the topTable function, with entries containing mis-
sing values excluded. Volcano plots were generated using the
HiOmics cloud platform (https://www.henbio.com/) [5].

Mendelian Randomization Analysis
The overlapping differentially expressed genes (DEGs) were
converted to Ensembl gene identifiers using the Ensembl
BioMart database. In the Mendelian randomization analysis, the
differential expression status of genes was not directly used as
the exposure variable, but served only to screen for genes with
potential biological relevance. The actual exposure variable was
defined as the expression level of the corresponding gene,
represented by expression quantitative trait loci (eQTLs). For
each candidate gene, summary statistics of associated eQTLs
were obtained from the OpenGWAS database, and single
nucleotide polymorphisms (SNPs) significantly associated with
gene expression were selected as instrumental variables (IVs).
IVs were filtered based on the significance of SNP‑gene
expression associations (p ≤ 1×10⁻⁵). Selected SNPs then
underwent linkage disequilibrium clumping (kb = 10,000, R² =
0.001) to ensure independence among instruments, and pali-
ndromic variants were excluded. The strength of the instr-
umental variables was assessed using the F‑statistic, with F > 10
considered sufficient to avoid weak instrument bias[6]. Finally,
using gene expression as the exposure and GWAS summary
statistics for nasopharyngeal carcinoma from the FinnGen
database as the outcome, Mendelian randomization analysis was
performed to evaluate potential causal relationships between
gene expression and NPC risk.
MR analyses were conducted under three core assumptions: (1)
IVs are strongly associated with the exposure (gene expression);
(2) IVs are independent of confounders; and (3) IVs affect the
outcome (NPC) only through the exposure. The inverse variance
weighted (IVW) method served as the primary approach[6]. Four
supplementary methods were also applied: MR-Egger, weighted
median, simple mode, and weighted mode[7-9].
Sensitivity analyses included Cochran’s Q test to assess
heterogeneity and MR-Egger intercept test to evaluate horiz-
ontal pleiotropy. A p-value < 0.05 indicated significant hetero-

geneity or potential pleiotropy[10, 11]. All analyses were perfor-
med in R using the “TwoSampleMR” (v0.6.8) and “MR-
PRESSO” (v1.0) packages.

Single-Cell RNA-Seq Processing and
Analysis
Two single-cell RNA sequencing datasets of nasopharyngeal
carcinoma, GSE150825 and GSE120926, were downloaded
from the Gene Expression Omnibus (GEO) database. GSE15-
0825 comprises 3 samples of nasopharyngeal lymphoid hyper-
plasia and 11 nasopharyngeal carcinoma samples, while GSE-
120926 includes 16 nasopharyngeal carcinoma samples and 8
non-malignant nasopharyngeal tissue samples. All non-malig-
nant samples and lymphoid hyperplasia samples were uniformly
classified as the non-cancerous control group.
Single-cell data analysis was performed in the R environment
using the “Seurat” package (version 4.1.1). Quality control is
achieved by selecting cells that contain at least 200 detectable
genes and a mitochondrial gene expression ratio below 15%.
Subsequently, cell cycle stages were assigned to each cell using
the “CellCycleScoring” function to assess potential cell cycle
effects.
During data preprocessing, the gene expression matrix of each
dataset was log-normalized using the “LogNormalize” method
in Seurat (scale factor = 10,000). To capture the major bio-
logical variations across cells, highly variable genes were
selected using the “FindVariableFeatures” function, retaining
the top 2000 most variable genes. The data were then linearly
scaled based on these selected genes using the “ScaleData”
procedure, followed by principal component analysis (PCA).
To mitigate batch effects between the two datasets, the
Harmony algorithm was applied to integrate them within the
PCA space. Using the first 15 principal components after
integration, cell-cell proximity was computed with the “Find-
Neighbors” function to construct a k-nearest neighbor graph for
downstream analysis. UMAP dimensionality reduction was then
performed for visualization and unsupervised clustering.
The choice of clustering resolution was evaluated using the
“Clustree” package (version 0.5.0) by comparing cluster sta-
bility and hierarchical relationships across multiple resolution
parameters. A resolution of 0.2 was ultimately selected. Diff-
erentially expressed genes for each cell cluster were then
identified using the “FindAllMarkers” function.
Cell type annotation was performed manually based on the top
100 marker genes per cluster, combined with known canonical
cell marker genes and relevant literature. Finally, the expression
patterns of key genes identified through Mendelian random-
ization analysis across different cell subtypes were visualized
using the “DotPlot” function in Seurat, where dot color and size
represent the average expression level and the proportion of
cells expressing the gene, respectively. In addition, stacked bar
plots illustrating cellular composition between tumor and
non-tumor tissues, as well as violin plots and boxplots showing
the expression of key genes in corresponding cell types, were
generated using the “ggplot2” package (version 3.3.6).

Results
Identification of Differentially Expressed Genes
Differential expression analysis was performed on the GSE53819 and GSE12452 datasets by comparing tumor tissues to
non-cancerous controls, using thresholds of |log ₂ FC| ≥ 1 and adjusted P < 0.05. In the GSE12452 dataset, 939 differentially

https://www.henbio.com/
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expressed genes (DEGs) were identified, including 575 up-regulated and 364 down-regulated genes. The GSE53819 dataset yielded
4,212 DEGs, of which 1,823 were up-regulated and 2,389 were down-regulated (Figures 1A, B). A Venn diagram generated with the
R package “ggvenn” (v0.1.10) revealed 494 shared DEGs between the two datasets (Figure 1C).

Figure1. (A)Volcano plot of differentially expressed genes between the healthy group and the tumor group in the GSE12452 dataset. (B)Volcano plot
of differentially expressed genes between the healthy group and the tumor group in the GSE53819 dataset. (C)Venn diagram illustrating the shared
differentially expressed genes across compared groups.

Mendelian Randomization Identifies
Causal Genes for NPC
GWAS data for eQTLs of 313 shared DEGs were obtained from
the OpenGWAS database, and summary statistics for naso-
pharyngeal carcinoma (FinnGen code: C3_NASOPHARYNX_
EXALLC) were retrieved from the FinnGen consortium. MR
analysis was conducted to estimate the causal effects of these
genes on NPC risk. The Wald ratio method was applied for
exposures with one SNP, and the inverse variance weighted
(IVW) method was used for exposures with two or more SNPs.
Four supplementary methods—MR-Egger, weighted median,
simple mode, and weighted mode — were also applied for
robustness. Associations with P < 0.05 in the primary method
(Wald ratio or IVW) were considered statistically significant.
Wald ratio analysis identified MFSD4 as a risk gene for NPC
(OR = 11.020, 95% CI: 1.637-74.150, P = 0.014)。And the wide
confidence interval observed for MFSD4 likely reflects the
limited number of instrumental variables available for this gene
and the relatively large standard error of the Wald ratio estimate.
(Table1)

Table 1 Mendelian randomization results forMFSD4

Exposure Snp Method
s OR(95%CI) Beta P-value

MFSD4 1 Wald
ratio

11.020
(1.637-74.150) 2.399 0.014

IVW analysis of exposures with exactly two SNPs revealed that
PSPH was associated with increased NPC risk (OR = 3.942,
95% CI: 1.135-13.685, P = 0.031), whereas THBS2 was
associated with reduced risk (OR = 0.211, 95% CI: 0.047-0.939,
P = 0.041). No significant heterogeneity was detected for these
associations (Cochran’s Q P > 0.05). (Table 2)

Table 2 Mendelian randomization results for PSPH and THBS2

Expos
ure Snp Met

hos

OR

(95%CI
)

Beta P-val
ue

Heterogeneity

Cochr
an’sQ

P-val
ue

PSPH 2 IVW
3.942

(1.135-1
3.685)

1.37
2 0.031 0.360 0.548
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Expos
ure Snp Met

hos

OR

(95%CI
)

Beta P-val
ue

Heterogeneity

Cochr
an’sQ

P-val
ue

THBS
2 2 IVW

0.211
(0.047-0
.939)

-1.5
54 0.041 0.116 0.733

For exposures with more than two SNPs, IVW analysis
indicated that TMEM200A was linked to decreased NPC risk
(OR = 0.288, 95% CI: 0.106-0.781, P = 0.014), while VPREB3
was associated with increased risk (OR = 2.903, 95% CI:
1.192-7.068, P = 0.019). (Table 3)

Table 3 Mendelian randomization results for TMEM200A and VPREB3

Exposure Snp Methods OR(95%CI) Beta P-value

TMEM200A 7

MR Egger 0.245(0.066-0.904) -1.405 0.088

Weighted median 0.339(0.111-1.036) -1.081 0.057

IVW 0.288(0.106-0.781) -1.244 0.014

Simple mode 0.646(0.089-4.656) -0.437 0.679

Weighted mode 0.358(0.113-1.132) -1.025 0.131

VPREB3 14

MR Egger 6.517(1.367-31.049) 1.874 0.036

Weighted median 3.754(1.314-10.720) 1.322 0.013

IVW 2.903(1.192-7.068) 1.066 0.019

Simple mode 1.070(0.110-10.355) 0.068 0.954

Weighted mode 3.646(1.136-11.704) 1.299 0.049

Heterogeneity testing revealed no significant heterogeneity between TMEM200A and VPREB3 in relation to nasopharyngeal
carcinoma (Cochran's Q p > 0.05). Furthermore, pleiotropy analysis indicated no detectable pleiotropic effect of these two genes on
nasopharyngeal carcinoma (p > 0.05). (Table 4)

Table 4 Results of heterogeneity and pleiotropy tests for TMEM200A and VPREB3

Exposure Snp Methods
Heterogeneity MR-PRESSO Horizontal pleiotropy

Cochran'sQ Qdf P-value P-value Egger intercept Se P-value

TMEM200A 7
MR Egger 2.893 5 0.716

0.864 0.047 0.127 0.722
IVW 3.034 6 0.804

VPREB3 14
MR Egger 15.037 12 0.239

0.239 -0.111 0.091 0.244
IVW 16.917 13 0.203

Single-Cell Expression Profiling of Key Genes
To evaluate batch effects and determine an appropriate clustering resolution for downstream single-cell analyses, dimensionality
reduction and clustering diagnostics were performed. Prior to batch correction, principal component analysis (PCA) revealed that cells
were primarily separated according to dataset and sample origin, indicating the presence of pronounced batch effects (Figure 2A).
After integration using Harmony, cells from different datasets and samples were well mixed in the low-dimensional space,
demonstrating effective batch correction (Figure 2B).
To further assess clustering behavior across different resolutions, clustering results were systematically examined over a range of
resolution parameters using a cluster tree visualization. The clustering tree showed that clusters underwent progressive and stable
refinement as resolution increased. At a resolution of 0.2, major cell populations were consistently preserved with limited cluster
fragmentation, providing a balance between cluster stability and granularity. Based on this evaluation, a resolution of 0.2 was selected
for subsequent clustering and downstream analyses (Figure 2C).
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Figure2. (A)Principal component analysis (PCA) of single-cell transcriptomes before batch correction, colored by sample and dataset, showing clear

batch-driven separation. (B)Low-dimensional embedding after Harmony integration, demonstrating effective batch correction and improved mixing of

cells across datasets and samples. (C)Cluster tree visualization across multiple resolution parameters generated using the clustree approach. Nodes

represent clusters at different resolutions, with node size indicating cell numbers and edges showing cluster relationships across resolutions.

After quality control, 157,289 cells from two single-cell RNA-seq datasets were retained for analysis. Unsupervised clustering at a
resolution of 0.2 identified 11 distinct cell populations. These clusters were annotated based on established marker genes as follows: B
cells (CD79A), CD4T cells (CD3D, CD4), CD8T cells (CD8A), Myeloid cells (LYZ), plasma B cells (SDC1), epithelial cells
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(EPCAM), fibroblasts (COL1A1), endothelial cells (VWF), mast cells (TPSAB1), plasmacytoid dendritic cells (LILRA4), and Cycling
cells (MKI67).
As shown in Figure 3A and 3C, single-cell RNA sequencing data were annotated into distinct cell populations, and the expression of
canonical marker genes confirmed the identity of each annotated cell type. Compared with non-tumor tissues, nasopharyngeal
carcinoma tissues exhibited a marked remodeling of immune cell composition, characterized by increased proportions of CD8+T cells,
CD4+T cells, myeloid cells, and epithelial cells, along with a relative reduction in B cells (Figure 3B) . In addition, tumor tissues
showed enrichment of fibroblast and endothelial cell populations, suggesting expansion of stromal and vascular components within
the NPC tumor microenvironment.
To further characterize the cellular context of MR-identified genes, their expression patterns were examined across annotated cell
types and between tumor and non-tumor samples. Dot plot analysis revealed distinct cell-type-specific expression profiles of the five
candidate genes (Figure 3D). PSPH was predominantly expressed in epithelial cells. TMEM200A and THBS2 expression was enriched
in fibroblasts; notably, TMEM200A was also detected in CD4+ and CD8+ T cells. MFSD4 was mainly found in endothelial cells, and
VPREB3 was highly expressed in B cells, with a high percentage of cells expressing it. Comparison between tumor and non-tumor
samples further demonstrated differential expression of these genes at the cellular level (Figure 3E). In particular, VPREB3 exhibited
higher expression and a larger fraction of expressing cells in non-tumor samples, whereas other genes showed more subtle but
cell-type-dependent expression differences, indicating that MR-identified genetic signals are reflected in distinct cellular expression
patterns within the tumor microenvironment.
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Figure3. (A)UMAP projection of integrated single-cell RNA-seq data showing major annotated cell types based on canonical marker genes.
(B)Relative proportions of cell types in non-tumor and tumor samples. (C)Feature plots of representative marker genes used for cell-type annotation.
(D)Dot plot showing the expression of PSPH, TMEM200A, THBS2,MFSD4, and VPREB3 across cell types. (E)Dot plot comparing the expression of
the five genes between non-tumor and tumor samples.

To further characterize the expression patterns of the Mendelian randomization-identified genes under disease conditions, stratified
comparisons were performed between nasopharyngeal carcinoma (NPC) samples and control samples within the primary cell types
expressing these genes (Figure  4). In epithelial cells, the risk gene PSPH was significantly upregulated in NPC samples compared
with controls (Wilcoxon test, P  <  0.0001), indicating its aberrant activation in tumor-associated epithelial cells. In fibroblasts, the
protective gene THBS2 exhibited significant expression changes in NPC tissues (P   <   0.0001), and TMEM200A also showed a
statistically significant difference in this cell population (P  <  0.05), suggesting pronounced molecular remodeling of stromal cells
during NPC development. Among immune cells, TMEM200A displayed a modest yet significant expression difference in CD8+T cells
(P  <  0.05), implying its potential involvement in regulating tumor-related immune status. Furthermore, in B-cell lineages, the risk
gene VPREB3 showed significant differential expression between NPC and control samples in B cells, cycling cells, and plasma cells
(all P  <  0.0001), demonstrating consistent disease-associated expression alterations. In contrast, MFSD4 expression in endothelial
cells did not differ significantly between NPC and control samples (P > 0.05), despite its clear cell type-specific expression pattern at
the single-cell level. These results indicate that the expression imbalance of MR-identified pathogenic and protective genes in NPC is
not uniformly driven by all cell types, but is primarily mediated by specific immune and stromal cell populations.
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Figure 4. Cell-type-specific differential expression of MR-identified genes between non-tumor and tumor samples. Violin plots showing the
expression differences of key genes between non-tumor and tumor groups within specific cell types. (A–C) Expression of TMEM200A in
fibroblasts(A), CD4⁺ T cells (B), and CD8⁺ T cells (C). (D) Expression of PSPH in epithelial cells. (E) Expression of THBS2 in fibroblasts. (F)
Expression of MFSD4 in endothelial cells. (G–I) Expression of VPREB3 in B cells (G), cycling cells (H), and plasma B cells (I). For each panel,
violin plots represent the distribution of gene expression levels, with overlaid boxplots indicating median and interquartile ranges. Statistical
significance between non-tumor and tumor groups was assessed using the Wilcoxon rank-sum test. Significance levels are indicated as P < 0.05 (*), P
< 0.01 (**), P < 0.001 (***), P < 0.0001 (****), and “ns” denotes not significant.

Discussion
By integrating multivariable Mendelian randomization (MR)
analysis with single-cell RNA sequencing data, this study
systematically elucidated the pathogenic genes underlying
nasopharyngeal carcinoma (NPC) and their potential mech-
anisms from the perspectives of genetic causal inference and
cellular resolution. The MR analysis identified five key genes
with causal associations with NPC development, among which
TMEM200A and THBS2 acted as protective factors, while
VPREB3, MFSD4, and PSPH were identified as risk factors.
Subsequent single-cell transcriptomic analysis not only del-
ineated the cell type–specific expression patterns of these genes
within the tumor microenvironment but also revealed their expr-
ession dysregulation between NPC tissues and control tissues,
thereby providing a clear cellular context for the genetic risk
signals.
TMEM200A belongs to the transmembrane protein family, and
its role in tumorigenesis remains poorly understood. In this study,
MR analysis confirmed TMEM200A as a protective factor for
NPC (OR = 0.288, 95% CI: 0.106–0.781, P = 0.014). Comp-
arative analysis at the single-cell level further showed that TM-
EM200A was primarily expressed in fibroblasts and T cells, with
significant differences between NPC and control samples.
Fibroblasts are key regulators of extracellular matrix remodeling
and immune cell recruitment in the tumor microenvironment[12,13],
while T cells play a central role in antitumor immunity and
immune surveillance[14]. The relatively high expression of TM-
EM200A in these two cell types suggests that it may suppress the
initiation and progression of NPC by modulating fibroblast–T
cell interactions and promoting an immune-supportive micro-
environment [15].
THBS2 encodes an extracellular matrix–associated protein invo-
lved in cell–cell and cell–matrix interactions, and plays an imp-
ortant role in regulating angiogenesis[16]. This study identified
THBS2 as a significant protective factor for NPC at the genetic
level (OR = 0.211, 95% CI: 0.047–0.939, P = 0.041). Single-cell
analysis showed that THBS2 was predominantly expressed by
fibroblasts and was significantly dysregulated in NPC compared
with control tissues. Previous studies have shown that THBS2
acts as an endogenous angiogenesis inhibitor that restricts tumor
neovascularization by antagonizing pro- angiogenic signals[17].
Combined with our findings, we propose that THBS2 may
attenuate microenvironmental support for tumor growth and
metastasis by inhibiting fibroblast-mediated angiogenesis and
stromal remodeling.
MFSD4 was identified as a high-risk gene for NPC (OR =
11.020, 95% CI: 1.637–74.150, P = 0.014) and was primarily
expressed in endothelial cells at the single-cell level. Tumor-
associated endothelial cells play a crucial role in angiogenesis,
tumor invasion, and metastasis[16,18]. Notably, endothelial dysf-
unction is often associated with sustained activation of pro-
angiogenic signaling pathways such as VEGF[19]. Although the
precise molecular function of MFSD4 remains incompletely
understood, its high expression in endothelial cells suggests that

this gene may promote NPC angiogenesis by enhancing end-
othelial responsiveness to pro-angiogenic signals, thereby
indirectly facilitating VEGF pathway activation. This hypothesis
offers a plausible explanation for the role of MFSD4 as a genetic
risk factor and suggests that the MFSD4–VEGF axis may
represent a potential target for future functional studies and
therapeutic intervention.
PSPH was significantly upregulated in epithelial cells, providing
direct cytological evidence for its role as a risk gene (OR = 3.942,
95% CI: 1.135–13.685, P = 0.031) in nasopharyngeal carcinoma
(NPC). As a key enzyme in the serine biosynthesis pathway[20],
aberrant activation of PSPH may enhance the anabolic capacity
of tumor cells and support their proliferation by promoting the
supply of nucleotides and amino acids. Furthermore, previous
studies have shown that PSPH can enhance tumor invasiveness
through signaling pathways such as MAPK[21]. Its specific
elevation in NPC epithelial cells suggests that metabolic
reprogramming may be an important mechanism underlying its
oncogenic effects.
VPREB3 is involved in early B-cell development and was
identified as a risk gene for NPC (OR = 2.903, 95% CI:
1.192–7.068, P = 0.019). Single-cell analysis revealed that
VPREB3 was mainly expressed in B cells and plasma cells and
displayed aberrant expression in NPC tissues. Previous research
suggests that B cells can promote tumorigenesis by forming
circulating immune complexes[22] and activating Fc receptors on
myeloid cells, thereby inducing chronic inflammation[23]. Abe-
rrant expression of VPREB3 may enhance pro-tumor inflam-
matory microenvironments or immune evasion by interfering
with B-cell receptor signaling or affecting B-cell differentiation
states.
In summary, our findings demonstrate that the genetic susce-
ptibility to nasopharyngeal carcinoma is primarily mediated
through functional imbalances across distinct cell types within
the tumor microenvironment, rather than being driven solely by
intrinsic alterations in tumor cells. Integrating Mendelian rando-
mization with single-cell transcriptomic data enables precise
mapping of genetic causal signals to specific cellular populations,
thereby providing a more refined cellular biological framework
for understanding the pathogenesis of nasopharyngeal car-
cinoma.

Limitations
Several limitations should be considered in interpreting our
findings. MR estimates may be biased in the presence of
horizontal pleiotropy, although sensitivity analyses in this study
did not detect significant pleiotropic effects. Furthermore, while
MR provides evidence for causal inference, the conclusions
require validation through functional experiments and clinical
studies. The GWAS and eQTL data used in this study were
primarily derived from European populations, which may limit
the generalizability of the results to other ethnic groups.
Additionally, static eQTL data do not capture dynamic gene
regulation over time or context, which may affect the interp-
retation of gene– disease causality. Future studies leveraging
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larger eQTL reference panels or tissue-specific regulatory
datasets may help refine the causal effect estimate of MFSD4.
And more diverse cohorts and time-resolved functional geno-
mics data will help refine these findings.

Conclusion
By integrating Mendelian randomization with single-cell RNA
sequencing, we identified five genes with causal relevance to
nasopharyngeal carcinoma risk and resolved their cell-type-
specific expression patterns within the tumor microenvironment.
Protective genes were primarily enriched in stromal and immune
cells, whereas risk genes localized to B cells, endothelial cells,
and epithelial cells, suggesting distinct cellular routes through
which genetic susceptibility influences NPC development. This
integrative framework bridges genetic causality and disease-
relevant cellular biology.
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