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Rapid advances in high-throughput sequencing and mass spectrometry have introduced substantial challenges for multi-omics data analysis,

including fragmented workflows, slow interactive responsiveness, and limited reproducibility of results. To address these issues, we present

HiOmics 2.0 (https://henbio.com), a substantially upgraded cloud platform. The core innovation is a hierarchical task-scheduling system that

decouples lightweight interactive tasks from compute-intensive analytical pipelines and enables real-time responses via a dedicated API

cluster. This redesign reduces the generation time of common analytical plots from over 30 seconds to below S seconds (an improvement

exceeding 80%), delivering responsiveness comparable to local desktop software. Building on this foundation, the platform adds modules for

single-cell transcriptomics, proteomics, metabolomics, pathogen detection, and Mendelian randomization. Accordingly, HiOmics has evolved

from a collection of discrete tools into an integrated infrastructure that supports systematic life science research. The unified platform enables

users to complete an end-to-end research workflow—from data preprocessing and multi-omics mining to model development and

visualization. As of November 2025, HiOmics 2.0 integrates 453 analytical tools, has recorded 112,957 visits from users worldwide, and has

completed 36,726 analytical tasks. Representative case studies demonstrate its utility in both basic research and clinical translation. Overall,

through architectural innovation and functional integration, HiOmics 2.0 provides an efficient, user-friendly, and reproducible all-in-one

solution for life science research.

Introduction

Recent advances in high-throughput sequencing and mass
spectrometry have accelerated the generation and accumulation
of multi-dimensional omics data across multiple biological
layers, including genomics, transcriptomics, proteomics, and
metabolomics. These massive, heterogeneous datasets offer
unprecedented opportunities to systematically elucidate the
complex mechanisms underlying biological processes!!l.
However, effectively leveraging these data remains challenging,
particularly with respect to data integration, workflow
standardization, and result reproducibility?l. Specifically, the
high heterogeneity of multi-omics datal*>! has contributed to
fragmented tool ecosystems and inconsistent processing
standards. This fragmentation reduces analytical efficiency,
weakens the linkage between visualization and interpretation,
and ultimately hampers independent verification and replication
of research findings.

Several bioinformatics platforms and tools have been developed
to address specific aspects of these challenges. For example,
Galaxy!®"! supports the construction of standardized workflows
across diverse data types, whereas ImageGP2®% focuses on
omics data visualization. However, these resources are often
limited in scope and deployed as standalone solutions, which
makes it difficult to support end-to-end multi-omics research
needs—from data processing to knowledge discovery—in a
unified manner. Consequently, a unified, user-friendly, and
extensible workflow platform for integrated multi-omics analys-
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is remains lacking. First, many methods (e.g., the mmMOI
multi-omics integration model proposed by Li et al.l'%) are
primarily distributed as source code. This distribution mode
places substantial demands on users’ programming and
modeling expertise, limiting accessibility for researchers
without strong computational backgrounds. Second, existing
solutions often exhibit gaps in functional coverage. Few
platforms provide a fully integrated pipeline that supports the
complete process, from raw data preprocessing and integrative
multi-omics mining to advanced statistical or machine learning
modeling and publication-quality visualization. This fragm-
entation hinders researchers from conducting multilevel
translational analyses—from basic discovery to clinical appli-
cations —within a single, coherent environment.

To address these challenges and incorporate ongoing feedback
from the user community, we developed and released HiOmics
2.0 (https://henbio.com), a substantially upgraded platform.
With the goals of lowering technical barriers, improving
analytical efficiency, and enhancing reproducibility, we
redesigned the platform to incorporate an updated task-
scheduling system and strengthened real-time interactive
capabilities. Building on existing functionality, HiOmics 2.0
introduces modules for single-cell transcriptomics, proteomics,
metabolomics, rapid pathogen detection, and Mendelian
randomization. Collectively, these additions provide an end-
to-end workflow encompassing data preprocessing, single- and
multi-omics integrative analysis, model development, and result
visualization and sharing. The platform adopts a decoupled
front-end/back-end  architecture and leverages Docker
containerization!'!], the WDL!!Z/Cromwell'*! workflow engine,
and cloud-native compute and storage services. This design
improves reliability and traceability while increasing the
efficiency of large-scale data processing and enhancing the
overall user experience.

Since its launch in 2022, HiOmics has supported an active user
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community and a wide range of application scenarios. This
upgrade aims to build a cloud platform that systematically
transforms raw data into interpretable knowledge and ultimately
actionable scientific insights. In doing so, it is intended to
improve the efficiency, reproducibility, and clinical translational
potential of multi-omics research. We aim to provide life
science researchers with an integrated, low-barrier, high-
performance infrastructure for omics analysis. In addition, this
release integrates our previously published HPD-Kit algorithm
for metagenomic pathogen detection!'* as a cloud-based service,
thereby expanding the platform’s utility for clinical infectious
disease diagnosis.

Methods

In HiOmics 2.0, we implemented major upgrades to the system
architecture and task-scheduling mechanisms to improve user
experience and processing efficiency. The platform adopts a
decoupled front-end/back-end architecture. The front end is
implemented with Vue.js!®! and the Element Plus component
library!'®! to deliver an intuitive and responsive user interface.
The back end is implemented with ThinkPHP!'7land exposes
modular RESTful API services; a MySQL database is used for
centralized management of users, tasks, and analysis metadata.

To improve responsiveness and resource utilization, we
implemented a hierarchical task-scheduling strategy. This
strategy decouples short-lived interactive tasks (e.g., plotting)
from long-running analytical workflows (e.g., multi-step omics
pipelines) and routes them to dedicated execution backends. For
computing and storage resources, HiOmics 2.0 uses Docker
containerization to encapsulate analysis environments, impro-
ving dependency consistency and reproducibility. The platform
is integrated with Alibaba Cloud Object Storage Service (OSS)
and Batch Compute, enabling elastic storage and distributed
computing for multi-user and large-scale processing scenarios,
while supporting reliable management and efficient processing
of large datasets. In summary, building on the previous version,
HiOmics 2.0 lowers barriers to complex multi-omics analysis
through refined task scheduling and continuous front-end/
back-end optimization. The platform is designed as an efficient
and reliable all-in-one solution for data analysis and visualiz-
ation.

Results

Core Architectural Innovation: Hie-
rarchical Task Scheduling System

A key component of the HiOmics 2.0 upgrade is a redesigned
task-scheduling architecture that addresses a major bottleneck in
interactive data exploration. In the earlier version, all
tasks—from complex, multi-step omics pipelines to simple
statistical plots—were submitted to a single queue managed by
a unified workflow engine (e.g., Cromwell). As a result, rapid
visualization and exploratory analysis tasks could experience
delays of tens of seconds, disrupting analytical continuity.

To address this issue, we designed and implemented a
hierarchical task scheduling system (Figure 1). The core idea is
to route tasks to distinct execution backends according to
computational demand and responsiveness requirements, as
follows:
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® Real-time interactive channel: For lightweight,
high-concurrency tasks (e.g., statistical lotting and simple
data transformations), we deployed a dedicated API cluster
based on the R RestRserve framework 81, When initiated
from the front end, requests are processed by this cluster
and typically return rendered results within 5 seconds,
providing an experience comparable to desktop software.

®  Batch analysis channel: For complex, standardized omics
workflows (e.g., RNA-seq and single-cell RNA-seq
analysis), tasks are managed and scheduled by the
WDL/Cromwell workflow engine, supporting reliability,
traceability, and fault tolerance.
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Figure 1. Architecture of the hierarchical task scheduling system in
HiOmics 2.0.The system dynamically routes tasks to dedicated backends based
on computational profiles and responsiveness requirements. The real-time
interaction channel handles lightweight, high-concurrency tasks (e.g., statistical
plotting) through a dedicated high-performance API cluster built on the
RestRserve framework, typically returning rendered results within 5 seconds to
support desktop-like interaction. The batch analysis channel executes complex,
standardized omics workflows (e.g., RNA-seq and single-cell analysis) via the
WDL/Cromwell workflow engine, improving reliability, traceability, and fault
tolerance.

This architecture decouples exploratory analysis from batch
computation, reducing response times for interactive tasks from
tens of seconds to a few seconds and providing a technical basis
for iterative scientific discovery.

Platform Functional Architecture

and Scale

The hierarchical scheduling system provides a technical
foundation for a comprehensive multi-omics analysis ecosystem.
Building on this foundation, HiOmics 2.0 integrates and
expands its functional architecture to support an end-to-end
workflow from raw data to biological insight. Platform
functionality is organized into three pillars—Analytical
Workflows, Professional Applications, and Resource Support—
encompassing 21 core analytical modules (Figure 2). The
Analytical Workflows pillar provides standardized pipelines
spanning major omics types, including genomics, transcript-
omics (including single-cell transcriptomics), proteomics,
metabolomics, metagenomics, and phenomics. The Professional
Applications pillar integrates tools for in-depth analyses,
including advanced statistical analysis, prognostic modeling
with immune-infiltration assessment, machine-learning/Al
modeling, and rapid pathogen detection based on the published
HPD-Kitl"¥. The Resource Support pillar integrates data
preprocessing, interactive visualization, and access to
biomedical databases and software resources, supporting
workflow completeness and result interpretability.
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is organized into three layers. The outer ring represents three foundational
components: Analytical Workflows (standardized pipelines across omics types),
Professional Applications (advanced and specialized analysis tools), and

< ; . Resource Support (data preprocessing, visualization, and knowledge bases).
\,) == Together, these components comprise 21 core analytical modules and support
Genomic
et e Anayss Prognostic F" integrated, modular analysis.
Basic
Plot Module Transcriptomic
. Analysis & \ .
S As of November 2025, the platform integrates 453 core

Data
Preprocessing

Somp ol - analytical tools and provides direct links to 1,121 external
resources. Since its launch in 2022, HiOmics has received
112,957 visits from users worldwide and completed 36,726
analytical tasks. Together, these metrics indicate broad usage
21l HiOmics 2.0 v and sustained adoption of the platform. This architecture reflects
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improve both coverage and analytical depth for addressing a
Figure 2. Functional architecture of the HiOmics 2.0 platform. The platform range of current research questions.

Application Case Studies

To illustrate the analytical performance and application scope of core HiOmics 2.0 modules, we present three representative case
studies. The case studies address three scenarios: (1) high-resolution single-cell exploratory analysis; (2) phenotype interpretation
from a metabolomic perspective; and (3) rapid metagenomic pathogen identification and source tracing with clinical relevance.
Collectively, they span stages from discovery-oriented exploration and mechanistic interpretation to application-oriented analysis,
highlighting the platform’s ability to support integrated analyses for complex biological questions.

Case study 1: Single-Cell Transcriptomics Analysis

Single-cell RNA sequencing (scRNA-seq) enables high-resolution profiling of gene expression in individual cells, supporting studies
of cellular heterogeneity, cell-state transitions, and tissue microenvironments. To lower technical barriers, HiOmics 2.0 integrates 20
tools spanning the scRNA-seq analysis workflow, providing a standardized path from raw sequencing data to biological interpretation
(Figure. 3A). The module supports key steps including cell quantification and quality control, clustering and visualization, differential
expression analysis, cell type annotation, cell-cell communication analysis, and immune repertoire profiling.

To demonstrate module functionality, we analyzed the 10x Genomics peripheral blood mononuclear cell (PBMC) scRNA-seq
dataset!'”Tusing HiOmics 2.0. We first performed filtering, normalization, dimensionality reduction, and unsupervised clustering using
the Single-Cell Quality-Control and Clustering tool, and visualized the resulting clusters (Figure. 3B). We then performed differential
expression analysis for each cluster. Using the manual annotation feature in the Cell Annotation tool, together with known marker
genes identified by differential expression (effect size and statistical significance), we annotated major immune populations, including
B cells, T cells, NK cells, and monocytes (Figure. 3C). We visualized expression patterns of selected genes using Single-Cell Gene
Expression Density Plots and Single-Cell Gene Expression Bubble Plots (Figure. 3D, E). Finally, we inferred ligand —receptor
interaction networks between cell types using the Cell Communication Analysis tool, and assessed associated signaling pathway
activity (Figure. 3F) and communication strength (Figure. 3G, H), generating hypotheses about intercellular crosstalk.
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Figure 3. scRNA-seq workflow and representative visualizations in HiOmics 2.0. (A) Overview of the standardized single-cell RNA sequencing (scRNA-seq)
analysis pipeline. (B) Uniform Manifold Approximation and Projection (UMAP) showing unsupervised clustering of peripheral blood mononuclear cells (PBMCs)
after quality control, normalization, and dimensionality reduction. (C) Cell type annotation based on marker-gene expression. (D) Density plots of key-gene expression
distributions across cell subpopulations. (E) Bubble plot showing average expression of signature genes and the fraction of expressing cells per cluster. (F) Schematic
of the cell - cell communication network inferred from ligand - receptor interactions. (G) Heatmap of inferred centrality scores. (H, I) Network and bubble plots
showing inferred communication strength between cell types and ligand - receptor pairs, respectively.

This case study shows that the single-cell module supports an end-to-end exploratory workflow from raw data to biological
hypotheses with minimal programming requirements. The module is designed to improve standardization and reproducibility and to
facilitate biological interpretation of sScRNA-seq results.

Case study 2: Metabolomics Profiling and Analysis
Metabolomics captures downstream biochemical changes and is often used to characterize functional phenotypes of biological

Zhang et al. iCell,Vol.2PILY3289(2025) 31 December 2025 4



ICELL JOURNAL | RESEARCH ARTICLE

systems. To support mechanistic interpretation from raw data, HiOmics 2.0 provides a dedicated metabolomics analysis module. The
module provides an integrated workflow for mass-spectrometry data preprocessing, metabolite annotation, multivariate statistical
analysis, and pathway enrichment.

To demonstrate module functionality, we analyzed a publicly available whole-blood metabolomics dataset in mzML format®l, We
first used the built-in Metabolomics MS Identification and Preprocessing tool to perform peak picking, alignment, normalization, and
metabolite annotation. Quality control indicated consistent total ion chromatograms (Figure. 4A) and balanced cross-sample intensity
distributions after log transformation (Figure. 4B); within-group reproducibility was supported by a sample-correlation heatmap
(Figure. 4C). We then performed principal component analysis (PCA) and orthogonal partial least squares discriminant analysis
(OPLS-DA) using the Multivariate Statistical Analysis tool (Figure. 4D, E). Differential metabolites were identified based on
statistical testing (Figure. 4F). In addition, users can invoke MetaboAnalyst 6.0 or use the built-in Basic Plot Module for
differential-metabolite analysis and customized visualization.
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Figure 4. Representative visualizations from the HiOmics 2.0 metabolomics module. (A) Total ion chromatogram (TIC) from raw liquid chromatography - mass
spectrometry (LC - MS) data. (B) Box plot of log-transformed signal intensities across samples. (C) Sample-by-sample Pearson correlation heatmap. (D) Principal
component analysis (PCA) score plot. (E) Orthogonal partial least squares discriminant analysis (OPLS-DA) permutation test. (F) Differential metabolite analysis

between groups.

This case study shows that the metabolomics module supports an end-to-end workflow — from raw data processing to hypothesis
generation—reducing the need to switch across multiple software tools.

Case study 3: Pathogen Detection and Analysis

Clinical metagenomic next-generation sequencing (mNGS) remains challenging due to complex workflows, abundant host-derived
background reads, and the difficulty of confidently identifying pathogenic organisms. To address these challenges, HiOmics 2.0
includes a dedicated Pathogen Analysis module. The module is built around our previously published HPD-Kit toolkit!'*], for which
performance evaluation and benchmarking have been reported previously; HiOmics 2.0 integrates HPD-Kit into an automated
web-based workflow from raw data upload to report generation (Figure. 5).
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Figure 5. Interface of the Pathogen Analysis module in HiOmics 2.0. (A) Main interface of the Pathogen Analysis module. Users access detection workflows via the
central panel and navigate using the left-side menu. (B) Interface of the Pathogen Analysis plug-in. The parameter configuration panel is on the left, and the

results/summary panel is on the right.

The module supports detection of major pathogen groups (viruses, bacteria, fungi, and parasites) and includes targeted identification
of clinically important atypical bacteria (e.g., Chlamydia, Mycoplasma, Rickettsia, and Spirochaeta). The platform also supports
pathogen genome assembly and maximum-likelihood phylogenetic tree construction using PhyML, enabling source tracing and
evolutionary analysis. Together, these features provide an end-to-end pipeline from pathogen identification to downstream
evolutionary analysis. Users upload raw sequencing data (e.g., respiratory, cerebrospinal fluid, blood, or stool samples) and select the
appropriate pipeline. The platform then executes: (1) host-read removal and quality control; (2) multi-algorithm pathogen
identification, reporting species abundance, genome coverage, and the novel Normalized Pathogen Abundance Score (NPAS)
(developed in this study); and (3) assembly of detected pathogen genomes followed by phylogenetic tree construction for source
tracing and variant analysis. This workflow consolidates steps that typically require command-line tools into a web-based service,
lowering the technical barrier for routine use.

This case study shows that the Pathogen Analysis module operationalizes HPD-Kit as an accessible service for clinical and research
use, supporting time-sensitive metagenomic analyses.

generate a standard differential-expression volcano plot
decreased from over 30 seconds to below 5 seconds (an
improvement exceeding 80%).

Integrated Performance and User
Experience

To evaluate the practical impact of the upgrade, we

benchmarked the hierarchical task-scheduling system. The
benchmark results indicate improved interactive responsiveness
under the new architecture. For example, the end-to-end time to
Zhang et al. iCell,Vol.2PILY3289(2025) 31 December 2025

For interaction design, the platform uses a synchronized
two-panel interface: users set parameters and submit tasks on
the left, and results are rendered on the right in real time. This
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design reduces frequent page switching between task
submission, result viewing, and file downloads in conventional
workflows. The platform also enables common statistical plots
(e.g., heatmaps and box plots) to be rendered within seconds,
facilitating interactive data exploration and iterative analysis.

To lower the barrier to adoption, we provide a support
framework with three components: (i) a user manual covering
platform overview, registration, tool wusage, and data
management, with guidance from introductory to advanced
operations; (ii) video tutorials organized by typical use cases,
with 16 videos covering bulk and single-cell transcriptomics,
prognostic model construction, publication-quality figure
generation, and Mendelian randomization; and (iii)) an
in-platform feedback mechanism with a one-click error report in
the task-management interface, where reports automatically
include task logs, environment metadata, and operation context
to support troubleshooting and issue resolution.

Together with the platform ’ s high-performance computing
backend, these components provide a cloud-based environment
for efficient processing and user-oriented interaction, lowering
the technical barrier for multi-omics analysis and shortening the
operational path from data to results. This allows researchers to
focus on scientific questions while routine analysis and
troubleshooting are handled within the platform.

Discussion

This study presents HiOmics 2.0, addressing challenges in
multi-omics data analysis related to platform integration,
interactive responsiveness, and analytical accessibility. HiOmics
2.0 introduces hierarchical task scheduling and integrates
modules for single-cell transcriptomics, metabolomics, and
clinical pathogen detection, enabling an end-to-end workflow
from data processing to downstream interpretation. Benc-
hmarking showed that interactive response times were reduced
by over 80% for representative plotting tasks. Case studies
illustrate the platform’s use in diverse scenarios, inclu- ding
constructing high-resolution cell atlases, investigating metabolic
regulation, and supporting rapid pathogen iden- tification.
Together, these advances move HiOmics from a collection of
discrete tools toward a cloud-based research environment that
supports integrated multi-omics analysis with improved
efficiency and reproducibility.

Compared with general-purpose workflow platforms (e.g.,
Galaxy) or standalone tools, HiOmics 2.0 emphasizes a tightly
integrated, closed-loop user workflow from task submission to
visualization and reporting. The upgrade contributes in three
aspects. First, hierarchical task scheduling reduces latency
during exploratory analysis and supports interactive, iterative
workflows. Second, HiOmics 2.0 integrates advanced modules
across single-cell omics, metabolomics, and pathogen detection,
including HPD-Kit previously published and evaluated in our
prior work['#l, providing a consolidated environment spanning
basic research and translational settings. Third, documentation,
video tutorials, and an in-platform one-click error-reporting
mechanism improve accessibility by simplifying onboarding
and troubleshooting. Collectively, these improvements provide
a more responsive and integrated environment for modern
multi-omics workflows.

Looking ahead, we will focus on platform intelligence,
interactive experience, and ecosystem openness. Planned work
includes exploring Al-agent assistance for workflow recom-
mendations and preliminary result summaries, optimizing
Zhang et al. iCell,Vol.2PILY3289(2025) 31 December 2025

real-time interaction and visual feedback, and enabling
connectivity with external resources through open APIs. Our
goal is to develop HiOmics into an intelligent, open, and
trustworthy next-generation life-science analysis platform.

Conclusion

Through architectural and functional upgrades, HiOmics 2.0
advances toward an integrated cloud platform for large-scale
multi-omics analysis. A key contribution is hierarchical task
scheduling, which reduces latency in interactive analysis and
improves responsiveness during exploratory workflows. By
integrating advanced analytical modules and providing
standardized, containerized workflows, HiOmics 2.0 lowers the
operational barrier to running end-to-end analyses while
improving reproducibility and traceability. Overall, HiOmics
2.0 provides a responsive and integrated analysis environment
for life-science research.
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