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Reviews
Artificial Intelligence in Immunoinformatics:
From Multi-Omics to Precision Immunology
Ziyi Liu1,Sanqi An2*,Wenxing Li3*

The immune system is a multilayered, adaptive network whose behavior emerges across molecules, cells, tissues, and time. Contemporary
immunology therefore generates high-dimensional, heterogeneous datasets that strain classical analytical assumptions. Artificial intelligence
(AI), spanning machine learning and deep learning, is increasingly becoming a core paradigm for extracting structure, prediction, and
actionable insight from these data.
This review summarizes how AI is transforming key steps of modern immunology, from sequencing- and repertoire-based analysis to antigen
specificity and epitope prioritization for vaccine design; from single-cell and spatial profiling to inference of immune states and cell–cell
communication; and from multi-omics integration to prediction and optimization of immunotherapy responses, including immune checkpoint
blockade and CAR-based therapies. We compare the strengths and limitations of major model families—convolutional and recurrent
networks, graph neural networks, generative models, and transformer-based architectures—highlighting how their inductive biases map to
immunological questions.
We also discuss barriers to broad adoption, including data standardization and metadata quality, interpretability and uncertainty calibration,
computational costs, and gaps between benchmark performance and clinical generalizability. Finally, we outline a roadmap toward
interpretable and uncertainty-aware models, cross-center data sharing and benchmarking, closed-loop “dry–wet” validation with
perturbation experiments, and clinically deployable pipelines for personalized immunodiagnosis and therapy.

Introduction
The immune system is a highly adaptive, multi-scale network
whose function emerges from coordinated interactions among
molecules, cells, tissues, and the environment. With the rapid
maturation of high-throughput sequencing (NGS), single-cell
and spatial omics, mass cytometry, and high-dimensional
imaging, immunology has entered a data-intensive era in which
genomic, transcriptomic, epigenomic, proteomic, and immune-
repertoire measurements are generated at unprecedented scale
and resolution[1]. However, immunological data are uniquely
challenging for classical bioinformatics and statistics because
they are intrinsically heterogeneous (e.g., extreme diversity of
TCR/BCR sequences), dynamic across space and time,
high-dimensional yet sparse (especially at single-cell resolution),
and frequently multi-modal, requiring joint interpretation of
molecular, cellular, and clinical layers[2, 3]. Artificial intelligence
(AI), particularly deep learning – based machine learning, is
increasingly adopted as a complementary paradigm because it
can learn hierarchical representations from raw or minimally
processed data, capture nonlinear dependencies, and support the
discovery of biomarkers and interaction networks that enable
both mechanistic hypotheses and translational decision-making[4,
5].

AI for Immune Repertoire
Analysis
Immune repertoires—the collection of functional TCR and BCR
sequences in an individual—directly reflect adaptive immune d-
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iversity and immune history and are now routinely profiled by
AIRR-seq[6]. Beyond classical diversity indices, NLP-inspired
models (e.g., Word2Vec and Transformer architectures) treat
amino-acid sequences as “sentences” to learn embeddings that
capture contextual features and enable efficient clustering,
visualization, and antigen-specificity inference, often improving
scalability over alignment-centric heuristics[7 – 9]. For clonotype
assignment and evolutionary tracking, deep neural networks
(e.g., CNNs and BiLSTMs) integrate V(D)J usage, CDR3
composition, and length patterns to improve clonal grouping,
while GNNs enable lineage-style inference of somatic hyperm-
utation trajectories and relatedness within graph- structured
similarity spaces[10,11]. A central objective is predicting pMHC–
TCR recognition: whereas earlier work relied on shallow
models such as SVMs, recent deep learning frameworks (e.g.,
DeepTCR and TCRGP) exploit convolutional and attention
mechanisms, and integrative models such as ERGO incorporate
peptide sequence, MHC allele information, and TCR features to
enhance generalization across alleles[12-14]. For antibodies,
structure-aware deep learning tools (e.g., DeepAb and ABody-
Builder) support structure prediction and downstream inference
of antigen binding and function [15,16].

AI for Epitope Prediction
and Vaccine Design
Epitope prediction is foundational for vaccines and immune
therapies. For B-cell epitopes — often conformational — AI
models trained on antibody–antigen complex resources reduce
reliance on expensive structure simulations; CNN-based
methods such as DeepBepi and BepiPred-3.0 support prediction
from sequence and/or structural features, while generative
approaches (e.g., SEGAN) extend toward antibody design with
desired binding properties[17-19]. For T-cell epitopes, MHC-
binding prediction has matured into practical standards:
NetMHCpan and related ANN-based tools are widely used for
class I/II prediction[20,21], and newer versions (e.g., NetMHC-
pan-4.1) together with MHCflurry 2.0 integrate mass-spectr-
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ometry –derived eluted ligand data to improve accuracy[22,23]. In
neoantigen discovery, AI-enabled pipelines typically combine
somatic variant detection with personalized MHC-binding
prediction and immunogenicity ranking; pVACseq provides an
integrative framework for prioritization[24], while deep learning
models such as DeepHLApan and EDGE move toward end-to-
end prediction by leveraging larger-scale multi-omics informati-
on[25,26]. AI also accelerated rational vaccine development
during COVID-19 by enabling rapid epitope screening and
sequence optimization, and generative models (e.g., VAEs and
GANs) increasingly propose novel immunogens under
predefined constraints, with potential extensions to delivery
optimization and personalized design guided by immune
repertoire and HLA context [27, 28].

AI for Immune Cell Profiling
and Systems Immunology
Single-cell multi-omics (scRNA-seq, CITE-seq, scATAC-seq)
has made immune heterogeneity and dynamics directly obser-
vable, but also increases computational complexity. Automated
annotation tools (e.g., SingleR and scPred) use reference-based
machine learning classifiers to improve speed and reduce
subjectivity[29,30], while Transformer-based pretraining such as
scBERT treats expression profiles as structured “ language, ”
enabling accurate cell-type recognition under zero- or few-shot
settings[31]. Deep generative models such as scVI and scANVI
learn unified latent representations that support dimensionality
reduction, batch correction, and clustering within a single
probabilistic framework[32]. For trajectories and fate decisions,
graph-based learning and Markov-process formulations (e.g.,
Palantir and CellRank) estimate transition probabilities and
lineage biases[33,34], and neural ODE– inspired methods such as
TrajectoryNet model continuous cellular dynamics over time[35].
Intercellular communication analysis remains central: ligand –
receptor tools such as CellPhoneDB rely on curated interactions
and statistics, whereas methods like NicheNet connect ligands
to downstream target programs using expression and prior
knowledge[36]. Spatially informed deep learning frameworks
(e.g., SpaGCN and MISTY) integrate spatial transcriptomics to
resolve microenvironmental communication patterns and
contextual dependencies[37,38]. For multi-omics integration,
approaches such as MOWGLI and MOFA+ discover shared
latent factors across modalities[39,40], and GNN-based network
modeling supports pathway-level reasoning under perturbation
by embedding molecular interactions into learnable graph
structures[41].

AI for Immunotherapy
Optimization
AI is increasingly deployed to predict response, toxicity, and
optimal use of immunotherapies. In radiomics and compu-
tational pathology, CNNs extract quantitative features from
CT/PET and whole-slide images to infer PD-L1 status, immune
infiltration patterns, and likelihood of response to immune
checkpoint inhibitors; histology-derived represe- ntations of
tumor-infiltrating lymphocyte spatial organization have shown
predictive value beyond conventional biomar- kers[42-45]. AI also
supports risk stratification for immune-related adverse events
(irAEs) by integrating baseline clinical variables with immun-
ological and microbiome features to anticipate complications

such as colitis or pneumonitis, enabling earlier monitoring and
intervention[46]. For CAR-T therapy, machine learning can assist
CAR design by learning from sequence – function datasets to
estimate affinity, activation thresholds, and off-target risk, and
can additionally optimize manufacturing decisions and forecast
in vivo expansion and persistence dynamics[47,48].

Challenges and Future
Directions
Despite rapid progress, broad adoption is constrained by data
quality and standardization, because immunological datasets are
collected across platforms and centers with variable protocols,
metadata completeness, and batch effects; community standards
such as those promoted by AIRR remain critical for reprodu-
cibility and generalization[49]. Model interpretability and calibr-
ated uncertainty are equally essential for mechanistic credibility
and clinical safety, motivating explainable AI approaches
including attention visualization, feature attribution, and
counterfactual reasoning[50]. Looking ahead, the field is likely to
advance through immunology-specific foundation models
pretrained on large-scale repertoire and single-cell resources,
iterative “dry–wet” closed-loop validation that rapidly tests AI-
generated hypotheses experimentally, and individualized digital
immune twins that integrate genomes, repertoires, microbiomes,
and clinical history to simulate disease trajectories and optimize
interventions.

Conclusion
Across immune repertoires, epitope and vaccine design,
single-cell systems immunology, and immunotherapy, AI is
evolving from a set of specialized tools into an enabling
framework that links high-dimensional immunological
measurements to predictive and mechanistic insight, with a clear
path toward clinically actionable immunodiagnosis and therapy.
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