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‘While single-cell sequencing technologies provide a high-resolution approach for dissecting cellular heterogeneity, their data are inherently
high-dimensional, sparse, noisy, and strongly affected by batch effects and limited annotations. These properties make artificial intelligence
(Al), particularly deep generative and probabilistic models, more suitable for analyzing single-cell data. Recent Al frameworks, including
variational inference—based model scVI and its extensions, have supported unified pipelines for normalization, representation learning, batch
correction, multimodal integration, and downstream analyses. Specialized downstream analyses, such as scalable cell-type annotation,
trajectory and dynamic inference, cell-cell communication analysis, spatial mapping, and the prediction of genetic or pharmacological
perturbation responses, can be extended by learning transferable latent representations. Emerging self-supervised foundation models promise
reusable cellular representations across tasks, tissues, and species. Addressing challenges in benchmarking, interpretability, uncertainty
quantification, and robust generalization highlights future frontiers in the development of predictive and causal single-cell models.
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Why Single-Cell Omics Nat-
urally Requires Artificial In-
telligence

Single-cell sequencing technologies, especially scRNA-seq,
scATAC-seq, and multi-omics joint profiling, allow researchers
to systematically characterize the heterogeneity of tissues and
disecases at single-cell resolution. However, these data exhibit
different statistical structures from traditional omics: high dime-
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technical noise and dropout events, strong batch effects and
experimental biases, while annotations are scarce and
distribution differences across technologies, tissues, and even
species are significant. [

These intrinsic properties limit the performance of linear models
or empirical rules. Al-based approaches such as deep learning,
probabilistic generative models, and self-supervised learning are
therefore better suited for unified representation learning and
robust inference. In recent years, the scVI ecosystem, centered
on variational inference and deep generative models, has
gradually established a new analytical paradigm: viewing
single-cell data as a stochastic process jointly generated by
latent biological states and technical noise, and performing
end-to-end probabilistic modeling to achieve holistic inference
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from raw count data to downstream biological interpretation.
[1,4,5]

From Workflow-Based Anal-
ysis to Probabilistic Genera-
tive Paradigm

Traditional single-cell analysis typically employs a workflow
that includes quality control, normalization, selection of highly
variable genes, dimensionality reduction, -clustering, and
differential analysis!®”). In the generative modeling framework,
these steps are reformulated as modeling different aspects of the
data-generating process!!8l.

For example, Seurat uses normalization and variance stab-
ilization based on regularized negative binomial regression have
been widely applied to large-scale datasets, providing a reliable
data foundation for robust analysis®!%. Complementarily, scVI
directly models expression distributions at the gene count level,
learning a low-dimensional latent space through variational
autoencoders, preserving Dbiological variation, separating
technical biases, and naturally supporting uncertainty quantifi-
cation 1111,

Latent Representation Lear-
ning and Multi-Modal Unif-
ied Representation

Learning transferable latent representations is one of the core
objectives of single-cell AI'>'Y. This latent space is used not
only for visualization and clustering but also serves as the
foundation for cross-dataset integration, annotation transfer, and
dynamic modeling.

In multi-omics scenarios, total VI achieves end-to-end denoising,
integration, and missing modality inference through jointly
probabilistically modeling RNA and protein (CITE-seq) datal*l.
For multi-modal or mosaic data such as scRNA-seq and
scATAC-seq, MultiVl and subsequent frameworks further
expand the applicability of joint representation learning, thereby
improving the reliability of integrative analysis under partially
missing modalities!!>!3],

Batch Correction and Cross-
Dataset Integration: Toward
Reusable Reference Atlases

Batch effect correction is a long-standing challenge in
single-cell research. Ideally, technical differences should be
removed while preserving true biological variation to the
greatest extent possiblel!!l,

To address this challenge, Harmony was proposed to iteratively
learn correction terms in a low-dimensional embedding,
balancing computational efficiency and integration quality, and
has become a commonly used solution for large-scale data
integration['!l. Seurat provides an alternative integration strategy
based on anchor identification, aligning cell states between
datasets, enabling alignment across experimental conditions and
sequencing technologies, as well as reference mapping!%!4],

Building on this, scArches introduces transfer learning into
generative models, allowing new data to be lightly mapped into
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existing reference latent spaces, providing a scalable solution
for continuously expanding cell atlases!'].

Automated Cell Type Annotation and Uncertainty Management
As single-cell atlases grow in scale, marker-based manual
annotation gradually becomes inadequate, and automated
outputs with controllable uncertainty become critical'l.

scANVI extends the scVI framework with semi-supervised
learning, using partially labeled cells to guide latent space
structure, improving annotation quality for unlabeled cells while
maintaining probabilistic consistency in the presence of batch
effectsl®l. scNym further combines semi-supervised learning
with domain adaptation and adversarial training, enhancing
generalization across experimental conditions and platforms!!”,

In practical applications, such models are often combined with
hierarchical labeling systems, rare cell recognition, and rejection
mechanisms to reduce the risk of overconfident misla-
beling!'%171,

Continuous States, Trajector-
ies, and Cellular Dynamics
Modeling

Single-cell states often form continuous spectra rather than
discrete categories; therefore, trajectory inference and dynamics
modeling are crucial for understanding development, activation,
and disease progression!'®1],

Manifold learning methods such as UMAP excel at preserving
local structure and often serve as the basis for neighborhood
graphs and trajectory analysis!'®). RNA velocity, which introd-
uces directional information to static expression data through
splicing kinetics, is generalized by scVelo to capture more
general transient states and enhances robustness via likelihood-
driven dynamic modeling!'!.

From an Al perspective, these problems can be formulated as
learning continuous-time generative processes or directed graph
structures in latent space, naturally compatible with neural
ODEs, graph neural networks, and probabilistic state-space
modelst!>20],

Cell - Cell Communication:
From Co-Expression Infere-
nce to Mechanistic Links

Cellular communication analysis usually constructs latent
interaction networks between cell populations based on ligand—
receptor databases as priors?!??l. CellPhoneDB provides syste-
matic ligand — receptor resources and statistical inference
pipelines, while CellChat emphasizes hierarchical features and
pattern analysis of communication networks?!22],

NicheNet advances communication inference from *“whether
interactions exist” to “downstream transcriptional responses,”
predicting ligand—target gene relationships by integrating signal
transduction and regulatory network priors, yielding results
closer to mechanistic interpretation?*!, With the development of
spatial  transcriptomics, incorporating spatial  proximity
constraints and graph models into communication analysis has
become an important trend.

Generative Prediction of Per-



ICELL JOURNAL | RESEARCH ARTICLE

turbation Responses and Dr-
ug Effects

Single-cell perturbation experiments (CRISPR, drugs, infection,
etc.) provide important information for causal mechanism
studies, but high experimental costs and enormous
combinatorial spaces make perturbation response prediction a
key Al task!?*23],

scGen learns latent differential vectors between control and
perturbed states through conditional variational autoencoders,
enabling extrapolation of perturbation effects across cell types
and studies?¥l. CellOT integrates optimal transport with neural
networks to learn mappings between unpaired distributions for
distribution-level counterfactual prediction(?],

These methods have potential value in drug screening and
personalized therapy, but require stricter cross-batch, cross-
donor, and cross-platform evaluation to avoid overly optimistic
generalization estimates?],

Spatial Information Integra-
tion: Placing Cellular States
Back into Tissue Coordinates

Spatial transcriptomics provides tissue structural information,
but remains limited in resolution and sequencing depth;
scRNA-seq, though information-rich, lacks spatial localiz-
ation?’-?], Tangram aligns single-cell expression with spatial
measurements through deep learning, providing probabilistic
mapping from single cells to spatial positions and reconstructing
spatial expression patterns of unmeasured genes?7l.

Recent studies further introduce graph structures, tissue
morphological images, and multi-modal priors to improve
spatial deconvolution and cell localization accuracy in complex
tissuest282,

Single-Cell Foundation Models and Self-Supervised Pretraining
With the rapid growth of public single-cell atlases and cell
numbers, the field has begun exploring ‘foundation models'
based on self-supervised pretraining to learn universal cellular
representations for downstream tasks(3=321,

scGPT, inspired by Transformer architectures in natural
language processing, treats “gene—cell” analogous to “word—
sentence, ”  pretraining on large-scale datasets and showing
potential in annotation, perturbation prediction, and cross-
species mapping tasks*2,

Core challenges in this direction include distribution shift,
cross-tissue generalization, model interpretability, and data
governance and privacy protection31-33],

Evaluation, Interpretability,

and Conclusion Credibility

Single-cell Al analyses are often affected by batch leakage,
label inconsistency, and donor overlaps, which may lead to
offline evaluation results that overestimate true generalization
performancel?634.  Therefore, the standardized evaluation
strategies by donor, batch, or experiment, as well as external
validation across tissues and platforms, have become incre-
asingly important?41,

For interpretability, traditional marker and pathway enrichment
analysis are now complemented by model-intrinsic approaches,
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such as attention mechanisms, feature attribution, latent factor
constraints, and generative counterfactual experiments, that help
convert “black-box representations” into testable biological
hypotheses(?3-33-361,

Summary and Outlook

Overall, artificial intelligence is advancing single-cell analysis
from a “toolbox-style workflow” to a “transferable, generative,
and joint-inference ” system modeling paradigm, particularly
excelling in representation learning, reference mapping, spatial
integration, and foundation modelst’*!327:301 Unified modeling
of heterogeneous single-cell data drives analysis toward holistic
insights into cellular states, dynamics, and interactions.
Moreover, these approaches facilitate scalable integration across
experiments, tissues, and even species, constructing a found-
ation for reusable reference atlases and predictive models for
perturbation or disease responses.

Key future directions include stricter cross-domain extrapo-
lation evaluation, causal inference —based perturbation predic-
tion, multi-modal models integrating spatial and imaging data,
and improved uncertainty quantification and interpretability
frameworks to support high-risk applications such as clinical
and drug development[?>2%3437] In addition, the development of
self-supervised foundation models shows potential for broad
application in cell representations, thereby reducing reliance on
extensive manual annotation and enabling transfer learning
across diverse biological contexts. Coupling these models with
mechanistic priors and multi-scale spatial information may
further enhance their predictive accuracy and biological
interpretability. Ultimately, these advances are expected to
transform single-cell research from descriptive atlases to
predictive, hypothesis-driven frameworks capable of guiding
experimental design, precision medicine, and therapeutic
discovery.
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