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Articles
Dynamic Profiling of the Tumor Microenv-
ironment in Lung Squamous Cell Carcinoma
by Multidimensional Transcriptomics
Dandan Sun1, Zixuan Liu1, Jiaqi Gu1, Quanlei Wang2*, Anxin Gu1*

Therapeutic options for lung squamous cell carcinoma (LSCC) remain limited and vary by TNM stage. Achieving precise, stage-dependent
treatment requires an understanding of how the tumor microenvironment (TME) changes during disease progression. Therefore, we
investigated stage-related TME changes and explored prognostic strategies based on multidimensional transcriptomic data. In this study, we
comprehensively characterize the TME during different stages of LSCC progression by integrating single-cell RNA sequencing (scRNA-seq),
spatial transcriptomics (ST), and bulk RNA sequencing (bulk RNA-seq). The TME of LSCC displayed marked heterogeneity across TNM
stages. Notably, the proportion of SPP1⁺ macrophages increased progressively from early to late disease and was associated with heightened
immunosuppressive activity. We constructed a prognostic model based on differentially expressed genes in SPP1⁺ macrophages between stage
IV and stage I. We found SPP1⁺ macrophages and fibroblasts exhibited the most frequent ligand-receptor interactions at the tumor edge. Our
study revealed stage-dependent remodeling of the LSCC TME and highlighted SPP1⁺ macrophage subgroup as key contributors to tumor
progression. The SPP1⁺ macrophage–based prognostic model may facilitate risk stratification and inform future therapeutic strategies.

Introduction
Lung squamous cell carcinoma (LSCC) is a major histologic
subtype of non-small cell lung cancer (NSCLC)[1]. Despite
considerable advances in lung cancer therapy, effective
LSCC-specific options remain limited and vary significantly
across TNM stages. For metastatic LSCC, first-line chemo-
immunotherapy achieves a median overall survival (OS) of only
17.1 months[2]. Therefore, further delineation of the cellular and
molecular interaction characteristics within the immune niche of
normal lung tissue and during the progression of LSCC is
crucial for precisely clinical diagnosis and therapy options.
Moreover, it is important to explore more effective treatments
and clinically applicable prognostic models to achieve precise
individualized treatment.
Previous studies showed that the tumor microenvironment
(TME) of LSCC comprises epithelial cells, infiltrating immune
cells, stromal elements, other resident cell types, and non-
cellular components that collectively influence tumor initiation
and progression[3]. However, the TME exhibits high heter-
ogeneity within immune cell populations, including the
presence of specific immune cell subsets that play stage-specific
roles during tumor progression. Therefore, further dissection of
the molecular features and spatiotemporal interaction heter-
ogeneity of these specific immune subsets is critical for under-
standing the pathogenesis of LSCC and optimizing immu-
notherapy strategies.
Single-cell RNA sequencing (scRNA-seq) enables high-reso-
lution profiling of thousands of cells per sample, providing
critical insight into intratumoral heterogeneity and the cellular
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complexity of the TME[4]. Furthermore, spatial transcriptomics
(ST) can provide the spatial distribution of various cell types[5].
Recent studies have applied scRNA-seq to LSCC: Zhang et al.
identified distinct basal-cell subclusters within LSCC[6]; Sandra
et al. examined basal-cell clonal dynamics and showed how fate
shifts contribute to early LSCC development[7]; and Wu et al.
delineated the TME landscape of advanced-stage LSCC[8].
However, these investigations are incomplete with respect to
disease progression and do not comprehensively assess how the
LSCC TME changes across pathological stages I – IV. To our
knowledge, no study has systematically profiled stage-depen-
dent TME remodeling throughout the full course of LSCC.
To elucidate the changes in LSCC progression, in the presented
study, we integrated scRNA-seq datasets from LSCC stages I to
IV to delineate the TME atlas. This stage-dependent atlas
delineates the cellular heterogeneity and remodeling of the TME
during disease progression. Within this atlas, we identified a
tumor-associated macrophage (TAM) subset—SPP1⁺ TAMs—
associated with immunosuppressive TME, and constructed a
prognostic model based on their differential features. We further
used publicly available ST datasets, which demonstrated the
localization and interactions of SPP1⁺ macrophages within the
TME. Collectively, these analyses provide a detailed molecular
view of TME remodeling across LSCC progression and
underscore the important role of SPP1⁺ macrophages.

Materials and Methods
Data Collection
We obtained scRNA-seq data from 53 tumor and adjacent
normal tissue samples from 17 untreated male patients with
LSCC through three databases: the Gene Expression Omnibus
(GEO) database (GSE194070), the National Genomics Data
Center (https://ngdc.cncb.ac.cn/cancerscem), and the lung
cancer database of West China Hospital, Sichuan University
(http://lungcancer.chenlulab.com). These datasets included
tumor samples categorized by TNM stages I, II, III, and IV (5,
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14, 6, and 10 tissues, respectively), along with 18 adjacent
normal tissue samples. The ST data used in the analysis were
obtained from BioStudies (https://www.ebi.ac.uk/biostudies/)
with accession number E-MTAB-13530. Bulk RNA-seq data
comes from the TCGA database (https://portal.gdc.cancer.gov/).

Single-cell RNA-seq Data Preproce-
ssing
We processed scRNA-seq data in R (version 4.4.1) with Seurat[9]
(version 5.1.0). Quality control removed cells with <200
detected genes or >20% mitochondrial expression, and genes
present in <3 cells. Datasets were integrated and batch-corrected
using Harmony[10] (version 1.2.1). After normalization, we
identified 2,000 highly variable genes (HVGs), computed S and
G2/M scores, and regressed cell-cycle effects (CellCycleScoring
/ScaleData). PCA on scaled HVGs yielded 50 principal
components (PCs) used to construct a shared nearest-neighbor
(SNN) graph (FindNeighbors) and perform clustering
(FindClusters). Uniform Manifold Approximation and
Projection (UMAP) was used for dimensionality reduction and
visualization.

Cell Type Annotation
Cell clusters were annotated based on canonical marker genes[11],
including eight distinct cell types: T/NK cells (CD3D), B cells
(CD79A), macrophages (CD14), dendritic cells (CD1C),
neutrophils (CSF3R), mast cells (TPSAB1), epithelial cells
(EPCAM), and fibroblasts (COL1A1).

Identification of Cancer Cells and
Cell Stemness Analysis
To identify cancer cells, we used epithelial cells from normal
control samples as reference cells and employed Inference of
Copy Number Variations (inferCNV)[12] (version 1.20.0) to
infer copy number variations (CNVs) in epithelial cells from
tumor samples. CopyKAT[13] was used to automatically identify
diploid cells as normal cells. For each non-diploid cell, break-
points of CNVs were identified, and segments were determined
using a Markov Chain Monte Carlo (MCMC) method. Normal
and tumor cells were distinguished based on their distinct gene
expression profiles. Finally, the results from inferCNV and
CopyKAT were combined to define the tumor cell populations
within the epithelial cells. Furthermore, cell stemness and
differentiation potential was inferred using the CytoTRACE[14]

(version 0.3.3) software package.

Construction and validation of pro-
gnostic risk model
We selected genes that were highly expressed in SPP1+
macrophages in stage IV compared to stage I. Using the
"glmnet" package[15], we performed a least absolute shrinkage
and selection operator (LASSO) Cox proportional hazards
regression analysis on genes that overlapped with those in the
TCGA-LUSC dataset. We compiled a list of genes with nonzero
coefficients, and the resulting risk model was carefully con-
structed by linearly summing the products of the genes and their
corresponding risk coefficients. Univariate Cox regression
analysis was performed on these genes in conjunction with
prognostic information from the TCGA-LUSC dataset to
validate their prognostic association. Multivariate Cox regr-

ession analysis was performed using age, TNM stage, and risk
score to demonstrate the independent predictive power of the
model. Patients were stratified into low-risk or high-risk groups
based on the median risk score threshold. To systematically
validate the prognostic performance of the model, we calculated
the area under the curve (AUC) using the "timeROC"
package[16]. Survival analysis was also performed based on the
Kaplan-Meier method. The predictive robustness of the model
was rigorously validated using AUC calculations from other
GEO datasets.

Gene Enrichment Analysis
Gene Ontology (GO) term enrichment analysis was performed
using the clusterProfiler R package[17] (version 4.12.6). For each
cell cluster, marker genes with a fold change > 1.5 and adjusted
P value < 0.01 were annotated based on the biological process
category of GO terms. GO terms with an adjusted P value <
0.05 were considered statistically significant.

Survival Analysis
To evaluate the prognostic value of SPP1 expression, patients
were stratified into high- and low-expression groups based on
the optimal cutoff value determined by the surv_cutpoint()
function from the survminer R package[18] (version 0.4.9). This
function identifies the cutpoint that best separates patients
according to overall survival using maximally selected rank
statistics. Patients were then categorized using the surv_
categorize() function, and survival differences between groups
were assessed using Kaplan –Meier survival analysis and the
log-rank test. Overall survival time was measured in months.

SCENIC Analysis
Single Cell Regulatory Network Inference and Clustering
(SCENIC)[19] (version 1.3.1) analysis was performed in R to
infer transcription factor (TF) regulatory networks, following
the standard workflow. Input was the normalized gene
expression matrix from Seurat. Regulon activity was quantified
using AUC scores to reflect TF activity across cells.

Pathway Activity Scoring via GSVA
To assess hallmark pathway activity across macrophage
subclusters, we performed GSVA with the GSVA R package[20]
(version 1.52.3). Hallmark gene sets for Homo sapiens were
obtained from MSigDB via msigdbr[21] (version 7.5.1) for Homo
sapiens. Seurat’s AverageExpression() generated subcluster-
level expression matrices by averaging gene expression per
gene, which served as GSVA input. Enrichment scores were
visualized as heatmaps using pheatmap with row-wise Z-score
normalization to highlight relative activity differences.

CellChat Analysis
Cell – cell communication was analyzed with CellChat[22]
(version 1.6.1). A CellChat object was created from the merged
Seurat object, using CellChatDB’s Secreted Signaling and Cell–
Cell Contact references. We computed communication proba-
bilities with computeCommunProb, inferring and aggregating
intercellular networks under default settings. Interaction
strength was visualized to show aggregated networks and each
cell type’s outgoing signals.

https://portal.gdc.cancer.gov/
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Cell type deconvolution and annot-
ation
We used the RCTD[23] (Deconvolution from Spatial Transcr-
iptome Data) method to deconvolute and annotate cell types
from ST data. RCTD is an innovative computational framework
designed to leverage spatial transcriptome data and scRNA-seq
datasets. In this analysis, we used scRNA-seq data from LSCC
as a reference and inferred the cell abundance of each point in
the ST data.

Spatial niche and cell distance ana-
lysis
To comprehensively understand the spatial niches and cell-to-
cell interactions of cells within a sample, we used the MISTy
(Multiview InterCellular Spatial Modeling Framework)
approach. MISTy analyzes cell-to-cell interactions through
different spatial environments, enabling the identification and
understanding of the formation and changes of spatial niches. In
this study, we used the MISTyR[24] (version 1.12.0) package to
analyze spatial niches in ST data based on the spatial distances
between cells.

Results
Single-cell landscape across differe- nt pathological stages of LSCC
The study workflow is shown in Figure 1A. After quality control, we retained 169,408 cells from 53 lung tissue samples and
partitioned them into eight major lineages, based on canonical marker genes expression (Figure 1B, C): T/NK cells, B cells,
macrophages, dendritic cells (DCs), neutrophils, mast cells, epithelial cells, and fibroblasts. Compared to adjacent normal lung,
tumors exhibited lower infiltration of T cells and NK cells, enrichment of B cells, and reduced infiltration of macrophages and DCs
(Supplementary Figure 1A). Interestingly, the abundances of inferred cell populations, for instance epithelial cells, T/NK cells,
macrophages etc. in the TME of LSCC also varied markedly with advancing TNM stage (Figure 1D). Collectively, these shifts in
cellular composition suggest stage-dependent remodeling of the LSCC tumor microenvir- onment that may contribute to disease
progression.
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Figure 1. Workflow and single-cell RNA sequencing analysis reveal the TME of LSCC. A. Overall workflow diagram; B. UMAP plot showing cell clustering across 53
samples, with different colors representing different cell types; C. UMAP plot showing classic marker genes for each cell type; D. Histogram showing the proportions of various
cell types across TNM stages and adjacent normal tissue.

Epithelial Cell Heterogeneity During LSCC Progression
To futher dissect the epithelial heterogeneity in LSCC, we applied inferCNV to 29,782 epithelial cells using matched normal
epithelial cells as the reference. As expected, both the inferCNV heatmap (Figure 2A) and CNV scoring (Supplementary Figure 2A)
revealed stage-dependent CNV patterns. Then, integration of CopyKAT results (Figure 2B) with inferCNV outputs enabled robust
separation of malignant from normal epithelial cells. Futher, Reclustering of malignant cells classified into seven subclusters (Figure
2C). CytoTRACE analysis demonstrated stemness heterogeneity arcoss TNM stage (Figure 2D), with T_C1 exhibiting the highest
stemness potential pattern (Figure 2E). Differential expression analysis highlighted up-regulated genes of T_C1, such as IDO1,
POLR2J3.1, FUT3, CLCA3P, TMPRSS2, and LRG1 (Figure 2F). Consistently, Hallmark GSVA showed T_C1 to be preferentially
enriched for hypoxia, EMT, TGF-β, Hedgehog, and KRAS signaling relative to other epithelial clusters (Supplementary Figure 2B).
Together, these findings strongly indicate that heterogeneity of tumor cells at different TNM stages and T_C1 represents a stem-like
epithelial subpopulation within LSCC tumors niche.

Figure 2. Expression patterns in epithelial cells of LSCC at different stages. A. Comparison of inferCNV analysis results between LSCC tumor cells at different stages and
normal epithelial cells. Colors represent the log2(CNV) ratio, with red representing amplification and blue representing deletion; B. Results of the CopyKat algorithm for all
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epithelial cells; C. The union of inferCNV and CopyKat results is identified as tumor cells. Seurat clusters are generated after dimensionality reduction and clustering of tumor
cells, where each point corresponds to a cell and different colors represent different clusters; D. The distribution of tumor cell stemness levels inferred by CytoTRACE. Red
represents cells with high stemness, and blue represents cells with low stemness; E. Box plots showing the stemness scores of seven tumor cell subtypes; F. Display the
differentially expressed genes of each tumor cell subtype relative to other subtypes.

Characteristics of immune cell infiltration during the progression of LSCC
We firstly analyzed the changes in T/NK cells, B cells and macrophages at different stages of LSCC. We divided T/NK cells into
fourteen subclusters based on the expression of canonical marker genes, including CD4_Tn_LTB/CD28 (naive cells),
CD4_Treg_TIGIT/CTLA4 (regulatory T cells), CD8_EM_GZMA (effector memory T cells), CD8_TRM_ITGAE (tissue resident
memory T cells), NK_CD16hi_GNLY/NKG7/KLRF1 (NK cells with high CD16 expression), NK_CD56bright_CD7 (NK cells with
bright CD56 expression), NK_CD11d_CD247 (CD11d-positive NK cells), NKT_S1PR1 (Natural Killer T cells), gdT_KLRC2
(Gamma delta T cells), and MAIT_IL7R (Mucosal-Associated Invariant T cells) (Figure 3A-B). Compared with other stages, the
proportion of CD4_Tn cells in stage IV LSCC decreased significantly, while the proportion of CD4_Treg cells increased significantly
(Figure 3C). CD4_Treg cells are the main immunosuppressive cell population in tumors. In line with previous study, higher
proportion of CD4_Treg cells often indicates a "cold" state of TME, and the dysfunction or excessive presence of CD4_Treg cells
subgroup will significantly weaken the effect of immunotherapy[25]. Our results are consistent with previous studies.

Figure 3. Distribution of T/NK cells, B cells and macrophages in different TNM stages. A. UMAP plots show T/NK cell clusters across all scRNA-seq samples from LSCC
patients; B. Dot plots show the expression profiles of key surface markers or functional marker genes across all T/NK cell clusters. Dot color indicates mean expression level, and
dot size indicates expression percentage; C. The proportion of various T/NK cell subtypes across different LSCC stages is shown; D. UMAP plots show B cell clusters across all
scRNA-seq samples from LSCC patients; E. UMAP plots show the expression profiles of key surface markers or functional marker genes across all B cell clusters; F. The
proportion of various B cell subtypes across different LSCC stages is shown; G. UMAP plots show macrophages clusters across all scRNA-seq samples from LSCC patients; H.
Dot plots show the expression profiles of key surface markers or functional marker genes across all macrophage clusters. Dot color indicates mean expression level, and dot size
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indicates expression percentage; I. The proportion of various macrophage subtypes across different LSCC stages is shown.

Previous study showed infiltration of B cells was associate with prognosis of lung cancer patients[26]. In the presented study, B cells
are annotated into three subclusters, including Bn (naive B cells), Bm (memory B cells) and plasma cells (Figure 3D-E). Interestingly,
the proportion of plasma cells was higher in stage I and IV tumor niche, while the proportion of memory B cells was higher in stage II
and III tumor tissues (Figure 3F). The above results indicated B cell subtypes-mediated immunity pathways activation might be
associated with LSCC prognosis.

We investigated the distribution patterns and cellular states of macrophage subtypes across different pathological stages of LSCC. In
total, 17,889 macrophages were categorized into six subclusters, including MT2A⁺ _mac, FOLR2⁺ _mac, MARCO⁺ _mac, CCL4
⁺ _mac, SPP1 ⁺ _mac, and CXCL9 ⁺ _mac (Figure 3G). The annotation of these macrophage subtypes was supported by the
expression profiles of classical macrophage markers as well as subtype-specific signature genes (Figure 3H). We next compared the
distribution of these macrophage subtypes across pathological stages I-IV of LSCC. Notably, the proportion of SPP1 ⁺ mac
progressively increased with advancing TNM stage (Figure 3I, Table 1), suggesting a potential association between SPP1⁺ mac and
LSCC progression. Previous studies have shown abundance of macrophages significantly increased in the mid‐to‐late‐stage and
higher levels of macrophage infiltration are associated with poor prognosis, which supports our hypothesis[27]. Taken together, these
results indicated that SPP1+ mac subpopulation potentially play a central role in mediating cellular crosstalk network regulating
LSCC prognosis within the immune microenvironment.

Table 1: Proportion of SPP1+ macrophages across TNM stages I–IV
TNM stage The proportion of SPP1+ macrophages (%)

I 5.17
II 6.72
III 12.77
IV 17.96

Table 1: Proportion of SPP1+ macrophages across TNM stages I–IV. TNM stage: Pathological stage I–IV according to standard AJCC criteria. The proportion of SPP1+

macrophages (%): For each sample, the percentage of macrophages classified as SPP1-positive among all macrophages, calculated as 100 × (SPP1+ macrophages / total

macrophages). Abbreviation: SPP1, secreted phosphoprotein 1 (osteopontin).

Prognostic model constructed based on SPP1+ macrophages
To test whether stage IV–specific alterations in SPP1⁺ macrophages are linked to LSCC prognosis, we constructed a polygenic risk
model, named SPP1⁺ Mac Differential Gene Score (SPP1⁺ Mac-DGS) based on the differentially expressed genes (DEGs) between
stage IV and stage I SPP1⁺ macrophages. Genes with avg_log₂ FC > 0 and p < 0.05 were considered up-regulated gene cocktails
(Figure 4A). Using the male subset of TCGA-LUSC as the training cohort, 516 up-regulated genes as the input; 16 absent from TCGA
were excluded, leaving 500 candidates for LASSO Cox modeling (Figure 4B, C). The final model comprised four genes, including
TBC1D1, GNG5, ID1, and MAX; with the formula: SPP1+Mac-DGS =0.0473×TBC1D1Exp + 0.0816×GNG5Exp + 0.0065×
ID1Exp − 0.1092×MAXExp. Univariate Cox analyses supported the prognostic relevance of these genes (Figure 4D), and
multivariable Cox analysis confirmed SPP1⁺ Mac-DGS as an independent predictor (Figure 4E).

Patients stratified by the median score showed significantly different overall survival (OS), with longer OS in the low-risk group
(log-rank p < 0.0001; Figure 4F). In the training cohort, time-dependent ROC curves yielded AUCs of 0.602, 0.683, and 0.675 for 1-,
3-, and 5-year OS, respectively (Figure 4G); the external validation cohort (GSE30219) showed comparable performance with AUCs
of 0.625, 0.655, and 0.682 (Figure 4H). We referenced the AUC values of prognostic models in previous literature. Although our
model's AUC value was not as high, it had similar accuracy to those in previous literature[28]. Collectively, these results indicate that
SPP1⁺ Mac-DGS provides stable, modest prognostic discrimination in LSCC.
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Figure 4. Construction and validation of the prognostic model SPP1+mac-DGS. A. Volcano plot showing significantly differentially expressed genes between stage IV and
stage I SPP1+ macrophages; B-C. Lambda trace and distribution of each independent variable; D. Univariate COX analysis of key genes and prognostic information of
TCGA-LUSC; E. Multivariate COX regression analysis of age, stage, risk score and prognostic information; F. Kaplan–Meier plot of prognostic survival of the male cohort in
TCGA-LUSC; G-H. ROC curves for the TCGA (G) test set and validation set GSE30219 (H). Red indicates 1-year survival rate, green indicates 3-year survival rate, and blue
indicates 5-year survival rate.

Functional Characterization of SPP1+ Macrophages
To delineate subtype-specific programs, we compared DEGs between SPP1⁺ macrophages and other macrophage subsets (Figure 5A).
Genes enriched in SPP1⁺ macrophages, such as S100A10, TPT1, and PTGES3 have been implicated in immunosuppression and tumor
invasion/metastasis, whereas genes preferentially expressed in other subsets (e.g., PTP4A3, SPDYA, HP, CCL17) encompass
cell-cycle control and T-cell activating functions and immunomodulatory activities. These patterns suggest that multiple macrophage
lineages may influence tumor progression via distinct mechanisms. The GO enrichment analysis further highlighted biological
differences between SPP1⁺ macrophages and other subtypes (Figure 5B–C). SPP1⁺ macrophages showed up-regulation of antiviral
response and metabolic reprogramming pathways accompanied by down-regulation of T-cell co-stimulation, antigen-receptor
signaling, and leukocyte adhesion. This transcriptomic signature indicates a deviation from classical pro-inflammatory macrophage
states, consistent with reduced immunostimulatory capacity and an immunosuppressive phenotype. Such features align with the
known tissue-remodeling and tumor-supportive roles of SPP1-high cells.

In the TCGA-LUSC cohort, SPP1 expression was significantly higher in tumors than in normal lung (Figure 5D), and high SPP1
expression level was associated with worse overall survival (Figure 5E), supporting the link between SPP1⁺ macrophage programs
and adverse prognosis.

Pathway activity profiling revealed subtype-specific signaling (Figure 5F). Notably, SPP1⁺ macrophages exhibited the highest activity
in MYC targets, angiogenesis, oxidative phosphorylation, DNA repair, and EMT, underscoring their pro-tumor features and
suggesting contributions to progression through metabolic remodeling, immune suppression, and promotion of tumor cell plasticity.
Finally, SCENIC analysis identified possible regulators of SPP1⁺ macrophages, including MAX, BCLAF1, HDAC2, ELF1, and ETV6
(Figure 5G).
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Figure 5. Functional characteristics of SPP1+ macrophages. A. Volcano plot showing genes significantly differentially expressed in SPP1+ macrophages compared to other
macrophage subtypes; B-C. Dot plot showing GO enrichment analysis results of significantly upregulated and downregulated genes in SPP1+ macrophages; D. The boxplot shows
the expression differences of SPP1 in tumor and normal tissues in the TCGA-LUSC dataset; E. Survival analysis of patients with high and low SPP1 expression; F. Heatmap of
pathway activity scores in different macrophage subtypes; G. Major factors regulating SPP1+ macrophage subtypes.

The SPP1 ⁺ macrophages-fibroblasts interaction marks an edge-localized,
immune-excluding niche in LSCC
To further decipher the signaling features of ligand-receptor interactions within the immune microenvironment at distinct TNM stages.
CellChat revealed that patterns of incoming and outgoing interaction strengths varied across LSCC stages; notably, macrophages
consistently exhibited higher outgoing strength than most other lineages (Figure 6A), indicating a dominant signal-sender role in the
TME. Within the SPP1 signaling pathway, the macrophage-fibroblast axis was among the most pronounced interactions (Figure 6B).
Across stages, CellChat predicted macrophage-derived SPP1 engaging integrin heterodimers on fibroblasts, including ITGA8+ITGB1
(Figure 6C). Violin plots of SPP1, ITGA8, and ITGB1 expression across cell types further demonstrated the cellular sources and
targets of these interactions (Figure 6D).
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Figure 6. Interaction between SPP1+ macrophages and fibroblasts. A. Dot plots showing the strength of incoming and outgoing interactions between cell types at different
disease stages; B. Heatmap showing the strength of interactions between cell types in the SPP1 signaling pathway at different stages. C. The dot plot shows the communication
probability between SPP1+ macrophages and fibroblasts at different stages. D. Violin plots show the expression of key ligands (SPP1) and receptors (ITGA8, ITGB1) at different
stages.

To futher dissect SPP1 ⁺ macrophages-fibroblasts interactions spatial feature, we analyzed a stage IB LSCC spatial transcriptomic
dataset. RCTD deconvolution mapped the locations and abundances of SPP1⁺ macrophages, fibroblasts, and tumor cells (Figure 7A),
revealing that SPP1 ⁺ macrophages and fibroblasts were enriched at the tumor edge. MISTy further identified proximity-based
associations (Figure 7B, C), and spatial distribution maps showed colocalization in the intra view, consistent with the
CellChat-inferred communication. This organization mirrors reports in NSCLC of a marginalized, immune-exclusive TME in which
SPP1⁺ TAMs and stromal-active cancer-associated fibroblasts（CAFs） (e.g., FAP⁺ /POSTN⁺ ) assemble at the tumor boundary and
are associated with restricted T-cell entry[29].
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Figure 7. Spatial distribution of SPP1+ macrophages and fibroblasts.A. The spatial distribution of SPP1+ macrophages, fibroblasts, and tumor cells in LSCC tissue sections is
visualized using the RCTD framework. B-C. Spatial microenvironmental and cell-cell interactions identified through MISTy analysis demonstrate that SPP1+ macrophages form a
spatial microenvironment with fibroblasts and tumor cells.

In sum, these multi-modal data support an SPP1-centered axis at the tumor–stroma interface in LSCC: macrophages act as dominant
senders, signaling through fibroblast integrin receptors to establish an immune-exclusive marginal niche that may impede lymphocyte
infiltration.

Discussion
To our knowledge, this is the first study to construct a stage
dynamic single-cell transcriptomic atlas of LSCC spanning TNM
stages I – IV. We delineated dynamic feature in the TME,
identified a progressive increase in SPP1 ⁺ macrophages with
advancing stage and their association with immunosuppressive
programs, and constructed a prognostic model grounded in SPP1
⁺ macrophage–related transcriptional differences.
Patients with LSCC, particularly those with advanced disease,
have limited therapeutic options and poor survival, underscoring
the need to chart TME evolution and to develop improved
treatment and prognostic strategies. Our research demonstrated
marked TME heterogeneity across stages I–IV and showed that
the proportion of SPP1 ⁺ macrophages rose with increasing
TNM stage, implicating stage-dependent recruitment or expa-
nsion of this subset in disease progression. SPP1 (secreted pho-
sphoprotein 1; osteopontin) is a secreted, non-collagenous
glycoprotein commonly upregulated in tumor and stromal
compartments, and elevated levels in blood and tumor tissues

have been linked to adverse outcomes across multiple cancers[30].
Consistent with these observations, SPP1 ⁺ macrophages have
been implicated in immunosuppressive TMEs in hepatocellular
carcinoma, glioblastoma, and colorectal cancer[31-33], supporting
our findings and the prognostic relevance of SPP1⁺ macrophage
–associated signatures in LSCC.
Based on genes up-regulated in stage IV relative to stage I within
SPP1 ⁺ macrophages, we developed a four-gene prognostic
model comprising TBC1D1, GNG5, ID1, and MAX. TBC1D1
encodes a Rab GTPase–activating protein that regulates vesicle
trafficking and glucose uptake[34]. GNG5 encodes the γ subunit
of heterotrimeric G proteins; together with Gβ it forms the Gβ
γ complex that modulates chemotaxis, migration, and polari-
zation, and has been linked to tumor-promoting phenotypes
across multiple cancers[35,36]. ID1, a helix–loop–helix transcr-
iptional regulator, is overexpressed in diverse malignancies and
promotes tumor growth, metastasis, angiogenesis, and therapy
resistance; in tumor-associated macrophages it contributes to an
immunosuppressive milieu, limiting CD8⁺ T-cell infiltration and
supporting cancer stemness[37]. MAX is a context-dependent hub
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of the MYC transcriptional network: as MYC’s essential dimer-
ization partner it enables oncogenic transcription and prolif-
eration, whereas its inactivation functions as a tumor-suppressive
event in specific tumor types[38]. Collectively, these mechanistic
links support the biological plausibility of the model and its
potential utility for prognostic risk stratification.
We used SCENIC to find five candidate regulators of SPP1 ⁺
macrophages — MAX, BCLAF1, HDAC2, ELF1, and ETV6.
Among these, HDAC2 (a class I histone deacetylase) emerged as
a promising therapeutic entry point. In lung cancer, M2-like
TAMs with high HDAC2 expression are associated with inferior
survival. Genetic or pharmacologic inhibition/silencing of
HDAC2 reprograms TAMs toward an M1-like state and
alleviates immunosuppression[39], and HDAC inhibitors can
enhance macrophage anti-tumor activity[40]. Together with our
SCENIC results, these data show HDAC2 as a potential
therapeutic target for LSCC.
Our integrative analyses centered on macrophage– fibroblast
crosstalk in LSCC. Consistent with CellChat inferences, macr-
ophages acted as dominant “senders” that signal to fibroblasts
through the SPP1 pathway, and spatial modeling placed these
populations in close proximity at the tumor– stroma interface.
This edge-localized pairing accords with reports that SPP1 ⁺
TAMs and stromal-active CAFs (e.g., FAP ⁺ /POSTN ⁺ )
assemble at tumor margins to form a barrier that excludes T cells
and modulates therapeutic response[41].
Our study for the first time revealed that the proportion of SPP1
⁺ macrophages in LSCC progressively increased with higher
TNM stages. We constructed a prognostic model based on the
differences in SPP1+ macrophages between stage IV and stage I
LSCC. These findings provide a rationale for developing stage-
dependent treatment strategies in LSCC. However, inferences
about the interaction between SPP1+ macrophages and
fibroblasts are based on published association studies rather than
direct experimental demonstration. Future studies should com-
bine mechanistic validation with prospective cohort testing.
In summary, we chart TME remodeling across LSCC stages,
highlight the progressive enrichment and immunosuppressive
role of SPP1 ⁺ macrophages, and demonstrate the prognostic
utility of the SPP1 ⁺ Mac-DGS model for risk stratification.
These findings offer insights into immune cell infiltration and
therapeutic responsiveness.

Limitations
Retrospective, public-dataset design. All analyses were perfor-
med on previously published scRNA-seq, spatial transcrip-
tomics, and bulk RNA-seq datasets. As such, sampling frames,
inclusion criteria, pre-analytical variables, and clinical
covariates (e.g., prior therapy, smoking exposure, comorbidities)
were heterogeneous and incompletely harmonized, which may
introduce residual confounding.
Stage annotation and cohort comparability. TNM staging was
derived from study metadata rather than uniform prospective
assessment, and stage distributions differed across datasets.
Therefore, some stage-dependent effects may reflect cohort
composition or technical factors rather than biology alone.
Cross-platform integration. Integrating scRNA-seq, ST, and
bulk data is sensitive to batch effects, platform chemistry, and
normalization choices. Although integration reduces obvious
batch structure, it cannot fully exclude alignment artifacts or
attenuation of genuine biological variation.
Interaction inference is correlational. Ligand–receptor comm-

unication between SPP1 ⁺ macrophages and fibroblasts was
inferred from transcript abundance and prior knowledge bases
rather than direct protein-level or functional assays. Post-
transcriptional regulation, ligand processing, receptor activation,
and spatial proximity constraints were not experimentally
verified.
No mechanistic validation. We did not perform perturbation
experiments (e.g., macrophage depletion, SPP1 blockade) or
orthogonal assays (protein, IHC/IF, multiplexed imaging) to
demonstrate causal roles for SPP1 ⁺ macrophages or their
crosstalk with fibroblasts.
Future work should incorporate multi-center prospective cohorts
with standardized staging and treatment annotation, orthogonal
protein/spatial validation, and mechanistic studies to test
whether modulating SPP1⁺ macrophage–fibroblast axes alter
LSCC progression and patient outcomes.
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